Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
relssi
Next ⟩
relssdv
Metamath Proof Explorer
Ascii
Unicode
Theorem
relssi
Description:
Inference from subclass principle for relations.
(Contributed by
NM
, 31-Mar-1998)
Ref
Expression
Hypotheses
relssi.1
⊢
Rel
⁡
A
relssi.2
⊢
x
y
∈
A
→
x
y
∈
B
Assertion
relssi
⊢
A
⊆
B
Proof
Step
Hyp
Ref
Expression
1
relssi.1
⊢
Rel
⁡
A
2
relssi.2
⊢
x
y
∈
A
→
x
y
∈
B
3
ssrel
⊢
Rel
⁡
A
→
A
⊆
B
↔
∀
x
∀
y
x
y
∈
A
→
x
y
∈
B
4
1
3
ax-mp
⊢
A
⊆
B
↔
∀
x
∀
y
x
y
∈
A
→
x
y
∈
B
5
2
ax-gen
⊢
∀
y
x
y
∈
A
→
x
y
∈
B
6
4
5
mpgbir
⊢
A
⊆
B