Metamath Proof Explorer


Theorem relssi

Description: Inference from subclass principle for relations. (Contributed by NM, 31-Mar-1998)

Ref Expression
Hypotheses relssi.1 Rel A
relssi.2 x y A x y B
Assertion relssi A B

Proof

Step Hyp Ref Expression
1 relssi.1 Rel A
2 relssi.2 x y A x y B
3 ssrel Rel A A B x y x y A x y B
4 1 3 ax-mp A B x y x y A x y B
5 2 ax-gen y x y A x y B
6 4 5 mpgbir A B