Metamath Proof Explorer


Theorem relssinxpdmrn

Description: Subset of restriction, special case. (Contributed by Peter Mazsa, 10-Apr-2023)

Ref Expression
Assertion relssinxpdmrn Rel R R S dom R × ran R R S

Proof

Step Hyp Ref Expression
1 relssdmrn Rel R R dom R × ran R
2 1 biantrud Rel R R S R S R dom R × ran R
3 ssin R S R dom R × ran R R S dom R × ran R
4 2 3 bitr2di Rel R R S dom R × ran R R S