Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Preparatory theorems
relssinxpdmrn
Next ⟩
cnvref4
Metamath Proof Explorer
Ascii
Unicode
Theorem
relssinxpdmrn
Description:
Subset of restriction, special case.
(Contributed by
Peter Mazsa
, 10-Apr-2023)
Ref
Expression
Assertion
relssinxpdmrn
⊢
Rel
⁡
R
→
R
⊆
S
∩
dom
⁡
R
×
ran
⁡
R
↔
R
⊆
S
Proof
Step
Hyp
Ref
Expression
1
relssdmrn
⊢
Rel
⁡
R
→
R
⊆
dom
⁡
R
×
ran
⁡
R
2
1
biantrud
⊢
Rel
⁡
R
→
R
⊆
S
↔
R
⊆
S
∧
R
⊆
dom
⁡
R
×
ran
⁡
R
3
ssin
⊢
R
⊆
S
∧
R
⊆
dom
⁡
R
×
ran
⁡
R
↔
R
⊆
S
∩
dom
⁡
R
×
ran
⁡
R
4
2
3
bitr2di
⊢
Rel
⁡
R
→
R
⊆
S
∩
dom
⁡
R
×
ran
⁡
R
↔
R
⊆
S