Metamath Proof Explorer


Theorem relssres

Description: Simplification law for restriction. (Contributed by NM, 16-Aug-1994)

Ref Expression
Assertion relssres Rel A dom A B A B = A

Proof

Step Hyp Ref Expression
1 simpl Rel A dom A B Rel A
2 vex x V
3 vex y V
4 2 3 opeldm x y A x dom A
5 ssel dom A B x dom A x B
6 4 5 syl5 dom A B x y A x B
7 6 ancrd dom A B x y A x B x y A
8 3 opelresi x y A B x B x y A
9 7 8 syl6ibr dom A B x y A x y A B
10 9 adantl Rel A dom A B x y A x y A B
11 1 10 relssdv Rel A dom A B A A B
12 resss A B A
13 11 12 jctil Rel A dom A B A B A A A B
14 eqss A B = A A B A A A B
15 13 14 sylibr Rel A dom A B A B = A