Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
relssres
Next ⟩
dmressnsn
Metamath Proof Explorer
Ascii
Unicode
Theorem
relssres
Description:
Simplification law for restriction.
(Contributed by
NM
, 16-Aug-1994)
Ref
Expression
Assertion
relssres
⊢
Rel
⁡
A
∧
dom
⁡
A
⊆
B
→
A
↾
B
=
A
Proof
Step
Hyp
Ref
Expression
1
simpl
⊢
Rel
⁡
A
∧
dom
⁡
A
⊆
B
→
Rel
⁡
A
2
vex
⊢
x
∈
V
3
vex
⊢
y
∈
V
4
2
3
opeldm
⊢
x
y
∈
A
→
x
∈
dom
⁡
A
5
ssel
⊢
dom
⁡
A
⊆
B
→
x
∈
dom
⁡
A
→
x
∈
B
6
4
5
syl5
⊢
dom
⁡
A
⊆
B
→
x
y
∈
A
→
x
∈
B
7
6
ancrd
⊢
dom
⁡
A
⊆
B
→
x
y
∈
A
→
x
∈
B
∧
x
y
∈
A
8
3
opelresi
⊢
x
y
∈
A
↾
B
↔
x
∈
B
∧
x
y
∈
A
9
7
8
syl6ibr
⊢
dom
⁡
A
⊆
B
→
x
y
∈
A
→
x
y
∈
A
↾
B
10
9
adantl
⊢
Rel
⁡
A
∧
dom
⁡
A
⊆
B
→
x
y
∈
A
→
x
y
∈
A
↾
B
11
1
10
relssdv
⊢
Rel
⁡
A
∧
dom
⁡
A
⊆
B
→
A
⊆
A
↾
B
12
resss
⊢
A
↾
B
⊆
A
13
11
12
jctil
⊢
Rel
⁡
A
∧
dom
⁡
A
⊆
B
→
A
↾
B
⊆
A
∧
A
⊆
A
↾
B
14
eqss
⊢
A
↾
B
=
A
↔
A
↾
B
⊆
A
∧
A
⊆
A
↾
B
15
13
14
sylibr
⊢
Rel
⁡
A
∧
dom
⁡
A
⊆
B
→
A
↾
B
=
A