Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Function transposition
reltpos
Next ⟩
brtpos2
Metamath Proof Explorer
Ascii
Unicode
Theorem
reltpos
Description:
The transposition is a relation.
(Contributed by
Mario Carneiro
, 10-Sep-2015)
Ref
Expression
Assertion
reltpos
⊢
Rel
⁡
tpos
F
Proof
Step
Hyp
Ref
Expression
1
tposssxp
⊢
tpos
F
⊆
dom
⁡
F
-1
∪
∅
×
ran
⁡
F
2
relxp
⊢
Rel
⁡
dom
⁡
F
-1
∪
∅
×
ran
⁡
F
3
relss
⊢
tpos
F
⊆
dom
⁡
F
-1
∪
∅
×
ran
⁡
F
→
Rel
⁡
dom
⁡
F
-1
∪
∅
×
ran
⁡
F
→
Rel
⁡
tpos
F
4
1
2
3
mp2
⊢
Rel
⁡
tpos
F