Database
REAL AND COMPLEX NUMBERS
Order sets
Supremum and infimum on the extended reals
reltre
Next ⟩
rpltrp
Metamath Proof Explorer
Ascii
Unicode
Theorem
reltre
Description:
For all real numbers there is a smaller real number.
(Contributed by
AV
, 5-Sep-2020)
Ref
Expression
Assertion
reltre
⊢
∀
x
∈
ℝ
∃
y
∈
ℝ
y
<
x
Proof
Step
Hyp
Ref
Expression
1
peano2rem
⊢
x
∈
ℝ
→
x
−
1
∈
ℝ
2
breq1
⊢
y
=
x
−
1
→
y
<
x
↔
x
−
1
<
x
3
2
adantl
⊢
x
∈
ℝ
∧
y
=
x
−
1
→
y
<
x
↔
x
−
1
<
x
4
ltm1
⊢
x
∈
ℝ
→
x
−
1
<
x
5
1
3
4
rspcedvd
⊢
x
∈
ℝ
→
∃
y
∈
ℝ
y
<
x
6
5
rgen
⊢
∀
x
∈
ℝ
∃
y
∈
ℝ
y
<
x