Metamath Proof Explorer


Theorem reltxrnmnf

Description: For all extended real numbers not being minus infinity there is a smaller real number. (Contributed by AV, 5-Sep-2020)

Ref Expression
Assertion reltxrnmnf x * −∞ < x y y < x

Proof

Step Hyp Ref Expression
1 elxr x * x x = +∞ x = −∞
2 reltre x y y < x
3 2 rspec x y y < x
4 3 a1d x −∞ < x y y < x
5 0red x = +∞ 0
6 breq1 y = 0 y < x 0 < x
7 6 adantl x = +∞ y = 0 y < x 0 < x
8 0ltpnf 0 < +∞
9 breq2 x = +∞ 0 < x 0 < +∞
10 8 9 mpbiri x = +∞ 0 < x
11 5 7 10 rspcedvd x = +∞ y y < x
12 11 a1d x = +∞ −∞ < x y y < x
13 breq2 x = −∞ −∞ < x −∞ < −∞
14 mnfxr −∞ *
15 nltmnf −∞ * ¬ −∞ < −∞
16 15 pm2.21d −∞ * −∞ < −∞ y y < x
17 14 16 ax-mp −∞ < −∞ y y < x
18 13 17 syl6bi x = −∞ −∞ < x y y < x
19 4 12 18 3jaoi x x = +∞ x = −∞ −∞ < x y y < x
20 1 19 sylbi x * −∞ < x y y < x
21 20 rgen x * −∞ < x y y < x