Metamath Proof Explorer


Theorem reltxrnmnf

Description: For all extended real numbers not being minus infinity there is a smaller real number. (Contributed by AV, 5-Sep-2020)

Ref Expression
Assertion reltxrnmnf x * −∞ < x y y < x

Proof

Step Hyp Ref Expression
1 elxr x * x x = +∞ x = −∞
2 reltre x y y < x
3 2 rspec x y y < x
4 3 a1d x −∞ < x y y < x
5 breq1 y = 0 y < x 0 < x
6 0red x = +∞ 0
7 0ltpnf 0 < +∞
8 breq2 x = +∞ 0 < x 0 < +∞
9 7 8 mpbiri x = +∞ 0 < x
10 5 6 9 rspcedvdw x = +∞ y y < x
11 10 a1d x = +∞ −∞ < x y y < x
12 breq2 x = −∞ −∞ < x −∞ < −∞
13 mnfxr −∞ *
14 nltmnf −∞ * ¬ −∞ < −∞
15 14 pm2.21d −∞ * −∞ < −∞ y y < x
16 13 15 ax-mp −∞ < −∞ y y < x
17 12 16 biimtrdi x = −∞ −∞ < x y y < x
18 4 11 17 3jaoi x x = +∞ x = −∞ −∞ < x y y < x
19 1 18 sylbi x * −∞ < x y y < x
20 19 rgen x * −∞ < x y y < x