Step |
Hyp |
Ref |
Expression |
1 |
|
cjval |
|
2 |
|
replim |
|
3 |
2
|
oveq1d |
|
4 |
|
recl |
|
5 |
4
|
recnd |
|
6 |
|
ax-icn |
|
7 |
|
imcl |
|
8 |
7
|
recnd |
|
9 |
|
mulcl |
|
10 |
6 8 9
|
sylancr |
|
11 |
5 10 5
|
ppncand |
|
12 |
3 11
|
eqtrd |
|
13 |
4 4
|
readdcld |
|
14 |
12 13
|
eqeltrd |
|
15 |
5 10 10
|
pnncand |
|
16 |
2
|
oveq1d |
|
17 |
6
|
a1i |
|
18 |
17 8 8
|
adddid |
|
19 |
15 16 18
|
3eqtr4d |
|
20 |
19
|
oveq2d |
|
21 |
7 7
|
readdcld |
|
22 |
21
|
recnd |
|
23 |
|
mulass |
|
24 |
6 6 22 23
|
mp3an12i |
|
25 |
20 24
|
eqtr4d |
|
26 |
|
ixi |
|
27 |
|
neg1rr |
|
28 |
26 27
|
eqeltri |
|
29 |
|
remulcl |
|
30 |
28 21 29
|
sylancr |
|
31 |
25 30
|
eqeltrd |
|
32 |
5 10
|
subcld |
|
33 |
|
cju |
|
34 |
|
oveq2 |
|
35 |
34
|
eleq1d |
|
36 |
|
oveq2 |
|
37 |
36
|
oveq2d |
|
38 |
37
|
eleq1d |
|
39 |
35 38
|
anbi12d |
|
40 |
39
|
riota2 |
|
41 |
32 33 40
|
syl2anc |
|
42 |
14 31 41
|
mpbi2and |
|
43 |
1 42
|
eqtrd |
|