Metamath Proof Explorer


Theorem remim

Description: Value of the conjugate of a complex number. The value is the real part minus _i times the imaginary part. Definition 10-3.2 of Gleason p. 132. (Contributed by NM, 10-May-1999) (Revised by Mario Carneiro, 7-Nov-2013)

Ref Expression
Assertion remim A A = A i A

Proof

Step Hyp Ref Expression
1 cjval A A = ι x | A + x i A x
2 replim A A = A + i A
3 2 oveq1d A A + A - i A = A + i A + A i A
4 recl A A
5 4 recnd A A
6 ax-icn i
7 imcl A A
8 7 recnd A A
9 mulcl i A i A
10 6 8 9 sylancr A i A
11 5 10 5 ppncand A A + i A + A i A = A + A
12 3 11 eqtrd A A + A - i A = A + A
13 4 4 readdcld A A + A
14 12 13 eqeltrd A A + A - i A
15 5 10 10 pnncand A A + i A - A i A = i A + i A
16 2 oveq1d A A A i A = A + i A - A i A
17 6 a1i A i
18 17 8 8 adddid A i A + A = i A + i A
19 15 16 18 3eqtr4d A A A i A = i A + A
20 19 oveq2d A i A A i A = i i A + A
21 7 7 readdcld A A + A
22 21 recnd A A + A
23 mulass i i A + A i i A + A = i i A + A
24 6 6 22 23 mp3an12i A i i A + A = i i A + A
25 20 24 eqtr4d A i A A i A = i i A + A
26 ixi i i = 1
27 neg1rr 1
28 26 27 eqeltri i i
29 remulcl i i A + A i i A + A
30 28 21 29 sylancr A i i A + A
31 25 30 eqeltrd A i A A i A
32 5 10 subcld A A i A
33 cju A ∃! x A + x i A x
34 oveq2 x = A i A A + x = A + A - i A
35 34 eleq1d x = A i A A + x A + A - i A
36 oveq2 x = A i A A x = A A i A
37 36 oveq2d x = A i A i A x = i A A i A
38 37 eleq1d x = A i A i A x i A A i A
39 35 38 anbi12d x = A i A A + x i A x A + A - i A i A A i A
40 39 riota2 A i A ∃! x A + x i A x A + A - i A i A A i A ι x | A + x i A x = A i A
41 32 33 40 syl2anc A A + A - i A i A A i A ι x | A + x i A x = A i A
42 14 31 41 mpbi2and A ι x | A + x i A x = A i A
43 1 42 eqtrd A A = A i A