Metamath Proof Explorer


Theorem remulg

Description: The multiplication (group power) operation of the group of reals. (Contributed by Thierry Arnoux, 1-Nov-2017)

Ref Expression
Assertion remulg N A N fld A = N A

Proof

Step Hyp Ref Expression
1 recn x x
2 readdcl x y x + y
3 renegcl x x
4 1re 1
5 1 2 3 4 cnsubglem SubGrp fld
6 eqid fld = fld
7 df-refld fld = fld 𝑠
8 eqid fld = fld
9 6 7 8 subgmulg SubGrp fld N A N fld A = N fld A
10 5 9 mp3an1 N A N fld A = N fld A
11 simpr N A A
12 11 recnd N A A
13 cnfldmulg N A N fld A = N A
14 12 13 syldan N A N fld A = N A
15 10 14 eqtr3d N A N fld A = N A