Metamath Proof Explorer


Theorem remulneg2d

Description: Product with negative is negative of product. (Contributed by SN, 25-Jan-2025)

Ref Expression
Hypotheses remulneg2d.a φ A
remulneg2d.b φ B
Assertion remulneg2d φ A 0 - B = 0 - A B

Proof

Step Hyp Ref Expression
1 remulneg2d.a φ A
2 remulneg2d.b φ B
3 0red φ 0
4 resubdi A 0 B A 0 - B = A 0 - A B
5 1 3 2 4 syl3anc φ A 0 - B = A 0 - A B
6 remul01 A A 0 = 0
7 1 6 syl φ A 0 = 0
8 7 oveq1d φ A 0 - A B = 0 - A B
9 5 8 eqtrd φ A 0 - B = 0 - A B