Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Steven Nguyen
Real subtraction
remulneg2d
Next ⟩
sn-it0e0
Metamath Proof Explorer
Ascii
Unicode
Theorem
remulneg2d
Description:
Product with negative is negative of product.
(Contributed by
SN
, 25-Jan-2025)
Ref
Expression
Hypotheses
remulneg2d.a
⊢
φ
→
A
∈
ℝ
remulneg2d.b
⊢
φ
→
B
∈
ℝ
Assertion
remulneg2d
⊢
φ
→
A
⁢
0
-
ℝ
B
=
0
-
ℝ
A
⁢
B
Proof
Step
Hyp
Ref
Expression
1
remulneg2d.a
⊢
φ
→
A
∈
ℝ
2
remulneg2d.b
⊢
φ
→
B
∈
ℝ
3
0red
⊢
φ
→
0
∈
ℝ
4
resubdi
⊢
A
∈
ℝ
∧
0
∈
ℝ
∧
B
∈
ℝ
→
A
⁢
0
-
ℝ
B
=
A
⋅
0
-
ℝ
A
⁢
B
5
1
3
2
4
syl3anc
⊢
φ
→
A
⁢
0
-
ℝ
B
=
A
⋅
0
-
ℝ
A
⁢
B
6
remul01
⊢
A
∈
ℝ
→
A
⋅
0
=
0
7
1
6
syl
⊢
φ
→
A
⋅
0
=
0
8
7
oveq1d
⊢
φ
→
A
⋅
0
-
ℝ
A
⁢
B
=
0
-
ℝ
A
⁢
B
9
5
8
eqtrd
⊢
φ
→
A
⁢
0
-
ℝ
B
=
0
-
ℝ
A
⁢
B