Metamath Proof Explorer


Theorem rencldnfilem

Description: Lemma for rencldnfi . (Contributed by Stefan O'Rear, 18-Oct-2014)

Ref Expression
Assertion rencldnfilem A B A ¬ B A x + y A y B < x ¬ A Fin

Proof

Step Hyp Ref Expression
1 eqeq1 a = c a = b B c = b B
2 1 rexbidv a = c b A a = b B b A c = b B
3 2 elrab c a | b A a = b B c b A c = b B
4 simp-4l A B A ¬ B A c b A A
5 simpr A B A ¬ B A c b A b A
6 4 5 sseldd A B A ¬ B A c b A b
7 6 recnd A B A ¬ B A c b A b
8 simp-4r A B A ¬ B A c b A B
9 8 recnd A B A ¬ B A c b A B
10 7 9 subcld A B A ¬ B A c b A b B
11 simprr A B A ¬ B A ¬ B A
12 11 ad2antrr A B A ¬ B A c b A ¬ B A
13 nelneq b A ¬ B A ¬ b = B
14 5 12 13 syl2anc A B A ¬ B A c b A ¬ b = B
15 subeq0 b B b B = 0 b = B
16 15 necon3abid b B b B 0 ¬ b = B
17 7 9 16 syl2anc A B A ¬ B A c b A b B 0 ¬ b = B
18 14 17 mpbird A B A ¬ B A c b A b B 0
19 10 18 absrpcld A B A ¬ B A c b A b B +
20 eleq1 c = b B c + b B +
21 19 20 syl5ibrcom A B A ¬ B A c b A c = b B c +
22 21 rexlimdva A B A ¬ B A c b A c = b B c +
23 22 expimpd A B A ¬ B A c b A c = b B c +
24 3 23 syl5bi A B A ¬ B A c a | b A a = b B c +
25 24 ssrdv A B A ¬ B A a | b A a = b B +
26 25 adantr A B A ¬ B A A Fin a | b A a = b B +
27 abrexfi A Fin a | b A a = b B Fin
28 rabssab a | b A a = b B a | b A a = b B
29 ssfi a | b A a = b B Fin a | b A a = b B a | b A a = b B a | b A a = b B Fin
30 27 28 29 sylancl A Fin a | b A a = b B Fin
31 30 adantl A B A ¬ B A A Fin a | b A a = b B Fin
32 simplrl A B A ¬ B A A Fin A
33 n0 A y y A
34 32 33 sylib A B A ¬ B A A Fin y y A
35 simp-4l A B A ¬ B A A Fin y A A
36 simpr A B A ¬ B A A Fin y A y A
37 35 36 sseldd A B A ¬ B A A Fin y A y
38 37 recnd A B A ¬ B A A Fin y A y
39 simp-4r A B A ¬ B A A Fin y A B
40 39 recnd A B A ¬ B A A Fin y A B
41 38 40 subcld A B A ¬ B A A Fin y A y B
42 41 abscld A B A ¬ B A A Fin y A y B
43 eqid y B = y B
44 fvoveq1 b = y b B = y B
45 44 rspceeqv y A y B = y B b A y B = b B
46 43 45 mpan2 y A b A y B = b B
47 46 adantl A B A ¬ B A A Fin y A b A y B = b B
48 eqeq1 a = y B a = b B y B = b B
49 48 rexbidv a = y B b A a = b B b A y B = b B
50 49 elrab y B a | b A a = b B y B b A y B = b B
51 42 47 50 sylanbrc A B A ¬ B A A Fin y A y B a | b A a = b B
52 51 ne0d A B A ¬ B A A Fin y A a | b A a = b B
53 34 52 exlimddv A B A ¬ B A A Fin a | b A a = b B
54 ssrab2 a | b A a = b B
55 54 a1i A B A ¬ B A A Fin a | b A a = b B
56 gtso < -1 Or
57 fisupcl < -1 Or a | b A a = b B Fin a | b A a = b B a | b A a = b B sup a | b A a = b B < -1 a | b A a = b B
58 56 57 mpan a | b A a = b B Fin a | b A a = b B a | b A a = b B sup a | b A a = b B < -1 a | b A a = b B
59 31 53 55 58 syl3anc A B A ¬ B A A Fin sup a | b A a = b B < -1 a | b A a = b B
60 26 59 sseldd A B A ¬ B A A Fin sup a | b A a = b B < -1 +
61 54 a1i A B A ¬ B A A Fin y A a | b A a = b B
62 soss a | b A a = b B < -1 Or < -1 Or a | b A a = b B
63 54 56 62 mp2 < -1 Or a | b A a = b B
64 63 a1i A B A ¬ B A A Fin < -1 Or a | b A a = b B
65 fisupg < -1 Or a | b A a = b B a | b A a = b B Fin a | b A a = b B c a | b A a = b B d a | b A a = b B ¬ c < -1 d d a | b A a = b B d < -1 c x a | b A a = b B d < -1 x
66 64 31 53 65 syl3anc A B A ¬ B A A Fin c a | b A a = b B d a | b A a = b B ¬ c < -1 d d a | b A a = b B d < -1 c x a | b A a = b B d < -1 x
67 elrabi c a | b A a = b B c
68 elrabi d a | b A a = b B d
69 vex c V
70 vex d V
71 69 70 brcnv c < -1 d d < c
72 71 notbii ¬ c < -1 d ¬ d < c
73 lenlt c d c d ¬ d < c
74 73 biimprd c d ¬ d < c c d
75 72 74 syl5bi c d ¬ c < -1 d c d
76 75 adantll A B A ¬ B A A Fin c d ¬ c < -1 d c d
77 68 76 sylan2 A B A ¬ B A A Fin c d a | b A a = b B ¬ c < -1 d c d
78 77 ralimdva A B A ¬ B A A Fin c d a | b A a = b B ¬ c < -1 d d a | b A a = b B c d
79 78 adantrd A B A ¬ B A A Fin c d a | b A a = b B ¬ c < -1 d d a | b A a = b B d < -1 c x a | b A a = b B d < -1 x d a | b A a = b B c d
80 67 79 sylan2 A B A ¬ B A A Fin c a | b A a = b B d a | b A a = b B ¬ c < -1 d d a | b A a = b B d < -1 c x a | b A a = b B d < -1 x d a | b A a = b B c d
81 80 reximdva A B A ¬ B A A Fin c a | b A a = b B d a | b A a = b B ¬ c < -1 d d a | b A a = b B d < -1 c x a | b A a = b B d < -1 x c a | b A a = b B d a | b A a = b B c d
82 66 81 mpd A B A ¬ B A A Fin c a | b A a = b B d a | b A a = b B c d
83 82 adantr A B A ¬ B A A Fin y A c a | b A a = b B d a | b A a = b B c d
84 lbinfle a | b A a = b B c a | b A a = b B d a | b A a = b B c d y B a | b A a = b B sup a | b A a = b B < y B
85 61 83 51 84 syl3anc A B A ¬ B A A Fin y A sup a | b A a = b B < y B
86 df-inf sup a | b A a = b B < = sup a | b A a = b B < -1
87 86 eqcomi sup a | b A a = b B < -1 = sup a | b A a = b B <
88 87 breq1i sup a | b A a = b B < -1 y B sup a | b A a = b B < y B
89 85 88 sylibr A B A ¬ B A A Fin y A sup a | b A a = b B < -1 y B
90 54 59 sselid A B A ¬ B A A Fin sup a | b A a = b B < -1
91 90 adantr A B A ¬ B A A Fin y A sup a | b A a = b B < -1
92 91 42 lenltd A B A ¬ B A A Fin y A sup a | b A a = b B < -1 y B ¬ y B < sup a | b A a = b B < -1
93 89 92 mpbid A B A ¬ B A A Fin y A ¬ y B < sup a | b A a = b B < -1
94 93 ralrimiva A B A ¬ B A A Fin y A ¬ y B < sup a | b A a = b B < -1
95 breq2 x = sup a | b A a = b B < -1 y B < x y B < sup a | b A a = b B < -1
96 95 notbid x = sup a | b A a = b B < -1 ¬ y B < x ¬ y B < sup a | b A a = b B < -1
97 96 ralbidv x = sup a | b A a = b B < -1 y A ¬ y B < x y A ¬ y B < sup a | b A a = b B < -1
98 97 rspcev sup a | b A a = b B < -1 + y A ¬ y B < sup a | b A a = b B < -1 x + y A ¬ y B < x
99 60 94 98 syl2anc A B A ¬ B A A Fin x + y A ¬ y B < x
100 ralnex y A ¬ y B < x ¬ y A y B < x
101 100 rexbii x + y A ¬ y B < x x + ¬ y A y B < x
102 rexnal x + ¬ y A y B < x ¬ x + y A y B < x
103 101 102 bitri x + y A ¬ y B < x ¬ x + y A y B < x
104 99 103 sylib A B A ¬ B A A Fin ¬ x + y A y B < x
105 104 ex A B A ¬ B A A Fin ¬ x + y A y B < x
106 105 3impa A B A ¬ B A A Fin ¬ x + y A y B < x
107 106 con2d A B A ¬ B A x + y A y B < x ¬ A Fin
108 107 imp A B A ¬ B A x + y A y B < x ¬ A Fin