Metamath Proof Explorer


Theorem renemnf

Description: No real equals minus infinity. (Contributed by NM, 14-Oct-2005) (Proof shortened by Andrew Salmon, 19-Nov-2011)

Ref Expression
Assertion renemnf A A −∞

Proof

Step Hyp Ref Expression
1 mnfnre −∞
2 1 neli ¬ −∞
3 eleq1 A = −∞ A −∞
4 2 3 mtbiri A = −∞ ¬ A
5 4 necon2ai A A −∞