Metamath Proof Explorer


Theorem renemnfd

Description: No real equals minus infinity. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypothesis rexrd.1 φ A
Assertion renemnfd φ A −∞

Proof

Step Hyp Ref Expression
1 rexrd.1 φ A
2 renemnf A A −∞
3 1 2 syl φ A −∞