Metamath Proof Explorer


Theorem renepnfd

Description: No (finite) real equals plus infinity. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypothesis rexrd.1 φ A
Assertion renepnfd φ A +∞

Proof

Step Hyp Ref Expression
1 rexrd.1 φ A
2 renepnf A A +∞
3 1 2 syl φ A +∞