Metamath Proof Explorer


Theorem rennim

Description: A real number does not lie on the negative imaginary axis. (Contributed by Mario Carneiro, 8-Jul-2013)

Ref Expression
Assertion rennim A i A +

Proof

Step Hyp Ref Expression
1 ax-icn i
2 recn A A
3 mulcl i A i A
4 1 2 3 sylancr A i A
5 rpre i A + i A
6 rereb i A i A i A = i A
7 5 6 syl5ib i A i A + i A = i A
8 4 7 syl A i A + i A = i A
9 4 addid2d A 0 + i A = i A
10 9 fveq2d A 0 + i A = i A
11 0re 0
12 crre 0 A 0 + i A = 0
13 11 12 mpan A 0 + i A = 0
14 10 13 eqtr3d A i A = 0
15 14 eqeq1d A i A = i A 0 = i A
16 8 15 sylibd A i A + 0 = i A
17 rpne0 i A + i A 0
18 17 necon2bi i A = 0 ¬ i A +
19 18 eqcoms 0 = i A ¬ i A +
20 16 19 syl6 A i A + ¬ i A +
21 20 pm2.01d A ¬ i A +
22 df-nel i A + ¬ i A +
23 21 22 sylibr A i A +