Metamath Proof Explorer


Theorem reperflem

Description: A subset of the real numbers that is closed under addition with real numbers is perfect. (Contributed by Mario Carneiro, 26-Dec-2016)

Ref Expression
Hypotheses recld2.1 J = TopOpen fld
reperflem.2 u S v u + v S
reperflem.3 S
Assertion reperflem J 𝑡 S Perf

Proof

Step Hyp Ref Expression
1 recld2.1 J = TopOpen fld
2 reperflem.2 u S v u + v S
3 reperflem.3 S
4 cnxmet abs ∞Met
5 3 sseli u S u
6 1 cnfldtopn J = MetOpen abs
7 6 neibl abs ∞Met u n nei J u n r + u ball abs r n
8 4 5 7 sylancr u S n nei J u n r + u ball abs r n
9 ssrin u ball abs r n u ball abs r S u n S u
10 2 ralrimiva u S v u + v S
11 rpre r + r
12 11 rehalfcld r + r 2
13 oveq2 v = r 2 u + v = u + r 2
14 13 eleq1d v = r 2 u + v S u + r 2 S
15 14 rspccva v u + v S r 2 u + r 2 S
16 10 12 15 syl2an u S r + u + r 2 S
17 3 16 sseldi u S r + u + r 2
18 5 adantr u S r + u
19 eqid abs = abs
20 19 cnmetdval u + r 2 u u + r 2 abs u = u + r 2 - u
21 17 18 20 syl2anc u S r + u + r 2 abs u = u + r 2 - u
22 simpr u S r + r +
23 22 rphalfcld u S r + r 2 +
24 23 rpcnd u S r + r 2
25 18 24 pncan2d u S r + u + r 2 - u = r 2
26 25 fveq2d u S r + u + r 2 - u = r 2
27 23 rpred u S r + r 2
28 23 rpge0d u S r + 0 r 2
29 27 28 absidd u S r + r 2 = r 2
30 21 26 29 3eqtrd u S r + u + r 2 abs u = r 2
31 rphalflt r + r 2 < r
32 31 adantl u S r + r 2 < r
33 30 32 eqbrtrd u S r + u + r 2 abs u < r
34 4 a1i u S r + abs ∞Met
35 rpxr r + r *
36 35 adantl u S r + r *
37 elbl3 abs ∞Met r * u u + r 2 u + r 2 u ball abs r u + r 2 abs u < r
38 34 36 18 17 37 syl22anc u S r + u + r 2 u ball abs r u + r 2 abs u < r
39 33 38 mpbird u S r + u + r 2 u ball abs r
40 23 rpne0d u S r + r 2 0
41 25 40 eqnetrd u S r + u + r 2 - u 0
42 17 18 41 subne0ad u S r + u + r 2 u
43 eldifsn u + r 2 S u u + r 2 S u + r 2 u
44 16 42 43 sylanbrc u S r + u + r 2 S u
45 inelcm u + r 2 u ball abs r u + r 2 S u u ball abs r S u
46 39 44 45 syl2anc u S r + u ball abs r S u
47 ssn0 u ball abs r S u n S u u ball abs r S u n S u
48 47 ex u ball abs r S u n S u u ball abs r S u n S u
49 9 46 48 syl2imc u S r + u ball abs r n n S u
50 49 rexlimdva u S r + u ball abs r n n S u
51 50 adantld u S n r + u ball abs r n n S u
52 8 51 sylbid u S n nei J u n S u
53 52 ralrimiv u S n nei J u n S u
54 1 cnfldtop J Top
55 1 cnfldtopon J TopOn
56 55 toponunii = J
57 56 islp2 J Top S u u limPt J S n nei J u n S u
58 54 3 5 57 mp3an12i u S u limPt J S n nei J u n S u
59 53 58 mpbird u S u limPt J S
60 59 ssriv S limPt J S
61 eqid J 𝑡 S = J 𝑡 S
62 56 61 restperf J Top S J 𝑡 S Perf S limPt J S
63 54 3 62 mp2an J 𝑡 S Perf S limPt J S
64 60 63 mpbir J 𝑡 S Perf