Metamath Proof Explorer


Theorem replim

Description: Reconstruct a complex number from its real and imaginary parts. (Contributed by NM, 10-May-1999) (Revised by Mario Carneiro, 7-Nov-2013)

Ref Expression
Assertion replim A A = A + i A

Proof

Step Hyp Ref Expression
1 cnre A x y A = x + i y
2 crre x y x + i y = x
3 crim x y x + i y = y
4 3 oveq2d x y i x + i y = i y
5 2 4 oveq12d x y x + i y + i x + i y = x + i y
6 5 eqcomd x y x + i y = x + i y + i x + i y
7 id A = x + i y A = x + i y
8 fveq2 A = x + i y A = x + i y
9 fveq2 A = x + i y A = x + i y
10 9 oveq2d A = x + i y i A = i x + i y
11 8 10 oveq12d A = x + i y A + i A = x + i y + i x + i y
12 7 11 eqeq12d A = x + i y A = A + i A x + i y = x + i y + i x + i y
13 6 12 syl5ibrcom x y A = x + i y A = A + i A
14 13 rexlimivv x y A = x + i y A = A + i A
15 1 14 syl A A = A + i A