Metamath Proof Explorer


Theorem reprf

Description: Members of the representation of M as the sum of S nonnegative integers from set A as functions. (Contributed by Thierry Arnoux, 5-Dec-2021)

Ref Expression
Hypotheses reprval.a φ A
reprval.m φ M
reprval.s φ S 0
reprf.c φ C A repr S M
Assertion reprf φ C : 0 ..^ S A

Proof

Step Hyp Ref Expression
1 reprval.a φ A
2 reprval.m φ M
3 reprval.s φ S 0
4 reprf.c φ C A repr S M
5 1 2 3 reprval φ A repr S M = c A 0 ..^ S | a 0 ..^ S c a = M
6 4 5 eleqtrd φ C c A 0 ..^ S | a 0 ..^ S c a = M
7 elrabi C c A 0 ..^ S | a 0 ..^ S c a = M C A 0 ..^ S
8 elmapi C A 0 ..^ S C : 0 ..^ S A
9 6 7 8 3syl φ C : 0 ..^ S A