Metamath Proof Explorer


Theorem reprfi

Description: Bounded representations are finite sets. (Contributed by Thierry Arnoux, 7-Dec-2021)

Ref Expression
Hypotheses reprval.a φ A
reprval.m φ M
reprval.s φ S 0
reprfi.1 φ A Fin
Assertion reprfi φ A repr S M Fin

Proof

Step Hyp Ref Expression
1 reprval.a φ A
2 reprval.m φ M
3 reprval.s φ S 0
4 reprfi.1 φ A Fin
5 1 2 3 reprval φ A repr S M = c A 0 ..^ S | a 0 ..^ S c a = M
6 fzofi 0 ..^ S Fin
7 mapfi A Fin 0 ..^ S Fin A 0 ..^ S Fin
8 4 6 7 sylancl φ A 0 ..^ S Fin
9 rabfi A 0 ..^ S Fin c A 0 ..^ S | a 0 ..^ S c a = M Fin
10 8 9 syl φ c A 0 ..^ S | a 0 ..^ S c a = M Fin
11 5 10 eqeltrd φ A repr S M Fin