Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Number Theory
Representations of a number as sums of integers
reprfz1
Next ⟩
hashrepr
Metamath Proof Explorer
Ascii
Unicode
Theorem
reprfz1
Description:
Corollary of
reprinfz1
.
(Contributed by
Thierry Arnoux
, 14-Dec-2021)
Ref
Expression
Hypotheses
reprfz1.n
⊢
φ
→
N
∈
ℕ
0
reprfz1.s
⊢
φ
→
S
∈
ℕ
0
Assertion
reprfz1
⊢
φ
→
ℕ
repr
⁡
S
N
=
1
…
N
repr
⁡
S
N
Proof
Step
Hyp
Ref
Expression
1
reprfz1.n
⊢
φ
→
N
∈
ℕ
0
2
reprfz1.s
⊢
φ
→
S
∈
ℕ
0
3
ssidd
⊢
φ
→
ℕ
⊆
ℕ
4
1
2
3
reprinfz1
⊢
φ
→
ℕ
repr
⁡
S
N
=
ℕ
∩
1
…
N
repr
⁡
S
N
5
fz1ssnn
⊢
1
…
N
⊆
ℕ
6
dfss
⊢
1
…
N
⊆
ℕ
↔
1
…
N
=
1
…
N
∩
ℕ
7
5
6
mpbi
⊢
1
…
N
=
1
…
N
∩
ℕ
8
incom
⊢
1
…
N
∩
ℕ
=
ℕ
∩
1
…
N
9
7
8
eqtri
⊢
1
…
N
=
ℕ
∩
1
…
N
10
9
oveq1i
⊢
1
…
N
repr
⁡
S
N
=
ℕ
∩
1
…
N
repr
⁡
S
N
11
4
10
eqtr4di
⊢
φ
→
ℕ
repr
⁡
S
N
=
1
…
N
repr
⁡
S
N