Metamath Proof Explorer


Theorem reprfz1

Description: Corollary of reprinfz1 . (Contributed by Thierry Arnoux, 14-Dec-2021)

Ref Expression
Hypotheses reprfz1.n φ N 0
reprfz1.s φ S 0
Assertion reprfz1 φ repr S N = 1 N repr S N

Proof

Step Hyp Ref Expression
1 reprfz1.n φ N 0
2 reprfz1.s φ S 0
3 ssidd φ
4 1 2 3 reprinfz1 φ repr S N = 1 N repr S N
5 fz1ssnn 1 N
6 dfss 1 N 1 N = 1 N
7 5 6 mpbi 1 N = 1 N
8 incom 1 N = 1 N
9 7 8 eqtri 1 N = 1 N
10 9 oveq1i 1 N repr S N = 1 N repr S N
11 4 10 eqtr4di φ repr S N = 1 N repr S N