Step |
Hyp |
Ref |
Expression |
1 |
|
reprgt.n |
|
2 |
|
reprgt.a |
|
3 |
|
reprgt.m |
|
4 |
|
reprgt.s |
|
5 |
|
reprgt.1 |
|
6 |
|
fz1ssnn |
|
7 |
2 6
|
sstrdi |
|
8 |
7 3 4
|
reprval |
|
9 |
|
fzofi |
|
10 |
9
|
a1i |
|
11 |
|
nnssre |
|
12 |
7 11
|
sstrdi |
|
13 |
12
|
ralrimivw |
|
14 |
13
|
ralrimivw |
|
15 |
14
|
r19.21bi |
|
16 |
15
|
r19.21bi |
|
17 |
|
ovex |
|
18 |
17
|
a1i |
|
19 |
18 2
|
ssexd |
|
20 |
19
|
adantr |
|
21 |
9
|
elexi |
|
22 |
21
|
a1i |
|
23 |
|
simpr |
|
24 |
|
elmapg |
|
25 |
24
|
biimpa |
|
26 |
20 22 23 25
|
syl21anc |
|
27 |
26
|
adantr |
|
28 |
|
simpr |
|
29 |
27 28
|
ffvelrnd |
|
30 |
16 29
|
sseldd |
|
31 |
10 30
|
fsumrecl |
|
32 |
4
|
nn0red |
|
33 |
32
|
adantr |
|
34 |
1
|
nn0red |
|
35 |
34
|
adantr |
|
36 |
33 35
|
remulcld |
|
37 |
3
|
zred |
|
38 |
37
|
adantr |
|
39 |
34
|
ad2antrr |
|
40 |
2
|
ad2antrr |
|
41 |
40 29
|
sseldd |
|
42 |
|
elfzle2 |
|
43 |
41 42
|
syl |
|
44 |
10 30 39 43
|
fsumle |
|
45 |
34
|
recnd |
|
46 |
|
fsumconst |
|
47 |
9 45 46
|
sylancr |
|
48 |
|
hashfzo0 |
|
49 |
4 48
|
syl |
|
50 |
49
|
oveq1d |
|
51 |
47 50
|
eqtrd |
|
52 |
51
|
adantr |
|
53 |
44 52
|
breqtrd |
|
54 |
5
|
adantr |
|
55 |
31 36 38 53 54
|
lelttrd |
|
56 |
31 55
|
ltned |
|
57 |
56
|
neneqd |
|
58 |
57
|
ralrimiva |
|
59 |
|
rabeq0 |
|
60 |
58 59
|
sylibr |
|
61 |
8 60
|
eqtrd |
|