Step |
Hyp |
Ref |
Expression |
1 |
|
reprinfz1.n |
|
2 |
|
reprinfz1.s |
|
3 |
|
reprinfz1.a |
|
4 |
|
nnex |
|
5 |
4
|
a1i |
|
6 |
5 3
|
ssexd |
|
7 |
|
ovex |
|
8 |
|
elmapg |
|
9 |
6 7 8
|
sylancl |
|
10 |
9
|
biimpa |
|
11 |
10
|
adantr |
|
12 |
|
elmapfn |
|
13 |
12
|
ad2antlr |
|
14 |
|
simplr |
|
15 |
1
|
nn0red |
|
16 |
15
|
ad3antrrr |
|
17 |
3
|
ad3antrrr |
|
18 |
|
simpllr |
|
19 |
9
|
ad3antrrr |
|
20 |
18 19
|
mpbid |
|
21 |
|
simplr |
|
22 |
20 21
|
ffvelrnd |
|
23 |
17 22
|
sseldd |
|
24 |
23
|
nnred |
|
25 |
|
fzofi |
|
26 |
25
|
a1i |
|
27 |
3
|
ad4antr |
|
28 |
20
|
ffvelrnda |
|
29 |
27 28
|
sseldd |
|
30 |
29
|
nnred |
|
31 |
26 30
|
fsumrecl |
|
32 |
|
simpr |
|
33 |
1
|
nn0zd |
|
34 |
33
|
ad3antrrr |
|
35 |
|
fznn |
|
36 |
34 35
|
syl |
|
37 |
23
|
biantrurd |
|
38 |
36 37
|
bitr4d |
|
39 |
38
|
notbid |
|
40 |
32 39
|
mpbid |
|
41 |
16 24
|
ltnled |
|
42 |
40 41
|
mpbird |
|
43 |
24
|
recnd |
|
44 |
|
fveq2 |
|
45 |
44
|
sumsn |
|
46 |
21 43 45
|
syl2anc |
|
47 |
29
|
nnnn0d |
|
48 |
|
nn0ge0 |
|
49 |
47 48
|
syl |
|
50 |
|
snssi |
|
51 |
50
|
ad2antlr |
|
52 |
26 30 49 51
|
fsumless |
|
53 |
46 52
|
eqbrtrrd |
|
54 |
16 24 31 42 53
|
ltletrd |
|
55 |
16 54
|
ltned |
|
56 |
55
|
necomd |
|
57 |
56
|
r19.29an |
|
58 |
57
|
neneqd |
|
59 |
58
|
adantlr |
|
60 |
14 59
|
pm2.65da |
|
61 |
|
dfral2 |
|
62 |
60 61
|
sylibr |
|
63 |
44
|
eleq1d |
|
64 |
63
|
cbvralvw |
|
65 |
62 64
|
sylibr |
|
66 |
13 65
|
jca |
|
67 |
|
ffnfv |
|
68 |
66 67
|
sylibr |
|
69 |
11 68
|
jca |
|
70 |
|
fin |
|
71 |
69 70
|
sylibr |
|
72 |
|
ovex |
|
73 |
72
|
inex2 |
|
74 |
73 7
|
elmap |
|
75 |
71 74
|
sylibr |
|
76 |
75
|
anasss |
|
77 |
76
|
rabss3d |
|
78 |
3 33 2
|
reprval |
|
79 |
|
inss1 |
|
80 |
79
|
a1i |
|
81 |
80 3
|
sstrd |
|
82 |
81 33 2
|
reprval |
|
83 |
77 78 82
|
3sstr4d |
|
84 |
3 33 2 80
|
reprss |
|
85 |
83 84
|
eqssd |
|