| Step |
Hyp |
Ref |
Expression |
| 1 |
|
reprval.a |
|
| 2 |
|
reprval.m |
|
| 3 |
|
reprval.s |
|
| 4 |
|
reprlt.1 |
|
| 5 |
1 2 3
|
reprval |
|
| 6 |
2
|
zred |
|
| 7 |
6
|
adantr |
|
| 8 |
3
|
nn0red |
|
| 9 |
8
|
adantr |
|
| 10 |
|
fzofi |
|
| 11 |
10
|
a1i |
|
| 12 |
|
nnssre |
|
| 13 |
12
|
a1i |
|
| 14 |
1 13
|
sstrd |
|
| 15 |
14
|
ad2antrr |
|
| 16 |
|
nnex |
|
| 17 |
16
|
a1i |
|
| 18 |
17 1
|
ssexd |
|
| 19 |
18
|
adantr |
|
| 20 |
10
|
elexi |
|
| 21 |
20
|
a1i |
|
| 22 |
|
simpr |
|
| 23 |
|
elmapg |
|
| 24 |
23
|
biimpa |
|
| 25 |
19 21 22 24
|
syl21anc |
|
| 26 |
25
|
adantr |
|
| 27 |
|
simpr |
|
| 28 |
26 27
|
ffvelcdmd |
|
| 29 |
15 28
|
sseldd |
|
| 30 |
11 29
|
fsumrecl |
|
| 31 |
4
|
adantr |
|
| 32 |
|
ax-1cn |
|
| 33 |
|
fsumconst |
|
| 34 |
10 32 33
|
mp2an |
|
| 35 |
|
hashcl |
|
| 36 |
10 35
|
ax-mp |
|
| 37 |
36
|
nn0cni |
|
| 38 |
37
|
mulridi |
|
| 39 |
34 38
|
eqtri |
|
| 40 |
|
hashfzo0 |
|
| 41 |
3 40
|
syl |
|
| 42 |
39 41
|
eqtrid |
|
| 43 |
42
|
adantr |
|
| 44 |
|
1red |
|
| 45 |
1
|
ad2antrr |
|
| 46 |
45 28
|
sseldd |
|
| 47 |
|
nnge1 |
|
| 48 |
46 47
|
syl |
|
| 49 |
11 44 29 48
|
fsumle |
|
| 50 |
43 49
|
eqbrtrrd |
|
| 51 |
7 9 30 31 50
|
ltletrd |
|
| 52 |
7 51
|
ltned |
|
| 53 |
52
|
necomd |
|
| 54 |
53
|
neneqd |
|
| 55 |
54
|
ralrimiva |
|
| 56 |
|
rabeq0 |
|
| 57 |
55 56
|
sylibr |
|
| 58 |
5 57
|
eqtrd |
|