Step |
Hyp |
Ref |
Expression |
1 |
|
reprpmtf1o.s |
|
2 |
|
reprpmtf1o.m |
|
3 |
|
reprpmtf1o.a |
|
4 |
|
reprpmtf1o.x |
|
5 |
|
reprpmtf1o.o |
|
6 |
|
reprpmtf1o.p |
|
7 |
|
reprpmtf1o.t |
|
8 |
|
reprpmtf1o.f |
|
9 |
|
eqid |
|
10 |
|
eqid |
|
11 |
|
ovexd |
|
12 |
|
nnex |
|
13 |
12
|
a1i |
|
14 |
13 3
|
ssexd |
|
15 |
|
lbfzo0 |
|
16 |
1 15
|
sylibr |
|
17 |
11 4 16 7
|
pmtridf1o |
|
18 |
9 9 10 11 11 14 17
|
fmptco1f1o |
|
19 |
|
f1of1 |
|
20 |
18 19
|
syl |
|
21 |
|
ssrab2 |
|
22 |
6
|
ssrab3 |
|
23 |
22
|
a1i |
|
24 |
1
|
nnnn0d |
|
25 |
3 2 24
|
reprval |
|
26 |
23 25
|
sseqtrd |
|
27 |
26
|
sselda |
|
28 |
21 27
|
sselid |
|
29 |
28
|
ex |
|
30 |
29
|
ssrdv |
|
31 |
|
f1ores |
|
32 |
20 30 31
|
syl2anc |
|
33 |
|
resmpt |
|
34 |
30 33
|
syl |
|
35 |
34 8
|
eqtr4di |
|
36 |
|
eqidd |
|
37 |
|
vex |
|
38 |
37
|
a1i |
|
39 |
10 38 30
|
elimampt |
|
40 |
|
simpr |
|
41 |
|
f1of |
|
42 |
18 41
|
syl |
|
43 |
42
|
ad2antrr |
|
44 |
10
|
fmpt |
|
45 |
43 44
|
sylibr |
|
46 |
28
|
adantr |
|
47 |
|
rspa |
|
48 |
45 46 47
|
syl2anc |
|
49 |
40 48
|
eqeltrd |
|
50 |
40
|
adantr |
|
51 |
50
|
fveq1d |
|
52 |
|
f1ofun |
|
53 |
17 52
|
syl |
|
54 |
53
|
ad2antrr |
|
55 |
|
simpr |
|
56 |
|
f1odm |
|
57 |
17 56
|
syl |
|
58 |
57
|
ad2antrr |
|
59 |
55 58
|
eleqtrrd |
|
60 |
|
fvco |
|
61 |
54 59 60
|
syl2anc |
|
62 |
61
|
adantlr |
|
63 |
51 62
|
eqtrd |
|
64 |
63
|
sumeq2dv |
|
65 |
|
fveq2 |
|
66 |
|
fzofi |
|
67 |
66
|
a1i |
|
68 |
17
|
adantr |
|
69 |
|
eqidd |
|
70 |
3
|
ad2antrr |
|
71 |
3
|
adantr |
|
72 |
2
|
adantr |
|
73 |
24
|
adantr |
|
74 |
23
|
sselda |
|
75 |
71 72 73 74
|
reprf |
|
76 |
75
|
ffvelrnda |
|
77 |
70 76
|
sseldd |
|
78 |
77
|
nncnd |
|
79 |
65 67 68 69 78
|
fsumf1o |
|
80 |
79
|
adantr |
|
81 |
71 72 73 74
|
reprsum |
|
82 |
81
|
adantr |
|
83 |
64 80 82
|
3eqtr2d |
|
84 |
|
fveq1 |
|
85 |
84
|
sumeq2sdv |
|
86 |
85
|
eqeq1d |
|
87 |
86
|
elrab |
|
88 |
49 83 87
|
sylanbrc |
|
89 |
25
|
ad2antrr |
|
90 |
88 89
|
eleqtrrd |
|
91 |
40
|
fveq1d |
|
92 |
53
|
ad2antrr |
|
93 |
16 57
|
eleqtrrd |
|
94 |
93
|
ad2antrr |
|
95 |
|
fvco |
|
96 |
92 94 95
|
syl2anc |
|
97 |
11 4 16 7
|
pmtridfv2 |
|
98 |
97
|
ad2antrr |
|
99 |
98
|
fveq2d |
|
100 |
|
simpr |
|
101 |
100 6
|
eleqtrdi |
|
102 |
|
rabid |
|
103 |
101 102
|
sylib |
|
104 |
103
|
simprd |
|
105 |
104
|
adantr |
|
106 |
99 105
|
eqneltrd |
|
107 |
96 106
|
eqneltrd |
|
108 |
91 107
|
eqneltrd |
|
109 |
90 108
|
jca |
|
110 |
109
|
r19.29an |
|
111 |
3
|
adantr |
|
112 |
2
|
adantr |
|
113 |
24
|
adantr |
|
114 |
|
simpr |
|
115 |
111 112 113 114
|
reprf |
|
116 |
|
f1ocnv |
|
117 |
|
f1of |
|
118 |
17 116 117
|
3syl |
|
119 |
118
|
adantr |
|
120 |
|
fco |
|
121 |
115 119 120
|
syl2anc |
|
122 |
|
elmapg |
|
123 |
14 11 122
|
syl2anc |
|
124 |
123
|
adantr |
|
125 |
121 124
|
mpbird |
|
126 |
125
|
adantr |
|
127 |
|
f1ofun |
|
128 |
17 116 127
|
3syl |
|
129 |
128
|
ad2antrr |
|
130 |
|
simpr |
|
131 |
|
f1odm |
|
132 |
17 116 131
|
3syl |
|
133 |
132
|
adantr |
|
134 |
130 133
|
eleqtrrd |
|
135 |
134
|
adantlr |
|
136 |
|
fvco |
|
137 |
129 135 136
|
syl2anc |
|
138 |
137
|
sumeq2dv |
|
139 |
|
fveq2 |
|
140 |
66
|
a1i |
|
141 |
17 116
|
syl |
|
142 |
141
|
adantr |
|
143 |
|
eqidd |
|
144 |
111
|
adantr |
|
145 |
115
|
ffvelrnda |
|
146 |
144 145
|
sseldd |
|
147 |
146
|
nncnd |
|
148 |
139 140 142 143 147
|
fsumf1o |
|
149 |
111 112 113 114
|
reprsum |
|
150 |
138 148 149
|
3eqtr2d |
|
151 |
150
|
adantr |
|
152 |
|
fveq1 |
|
153 |
152
|
sumeq2sdv |
|
154 |
153
|
eqeq1d |
|
155 |
154
|
elrab |
|
156 |
126 151 155
|
sylanbrc |
|
157 |
25
|
ad2antrr |
|
158 |
156 157
|
eleqtrrd |
|
159 |
128
|
ad2antrr |
|
160 |
4 132
|
eleqtrrd |
|
161 |
160
|
ad2antrr |
|
162 |
|
fvco |
|
163 |
159 161 162
|
syl2anc |
|
164 |
|
f1ocnvfv |
|
165 |
164
|
imp |
|
166 |
17 16 97 165
|
syl21anc |
|
167 |
166
|
ad2antrr |
|
168 |
167
|
fveq2d |
|
169 |
|
simpr |
|
170 |
168 169
|
eqneltrd |
|
171 |
163 170
|
eqneltrd |
|
172 |
|
fveq1 |
|
173 |
172
|
eleq1d |
|
174 |
173
|
notbid |
|
175 |
174
|
elrab |
|
176 |
158 171 175
|
sylanbrc |
|
177 |
176 6
|
eleqtrrdi |
|
178 |
177
|
anasss |
|
179 |
|
simpr |
|
180 |
179
|
coeq1d |
|
181 |
180
|
eqeq2d |
|
182 |
|
f1ococnv1 |
|
183 |
17 182
|
syl |
|
184 |
183
|
adantr |
|
185 |
184
|
coeq2d |
|
186 |
115
|
adantrr |
|
187 |
|
fcoi1 |
|
188 |
186 187
|
syl |
|
189 |
185 188
|
eqtr2d |
|
190 |
|
coass |
|
191 |
189 190
|
eqtr4di |
|
192 |
178 181 191
|
rspcedvd |
|
193 |
110 192
|
impbida |
|
194 |
39 193
|
bitrd |
|
195 |
|
fveq1 |
|
196 |
195
|
eleq1d |
|
197 |
196
|
notbid |
|
198 |
197
|
elrab |
|
199 |
194 198
|
bitr4di |
|
200 |
199
|
eqrdv |
|
201 |
200 5
|
eqtr4di |
|
202 |
35 36 201
|
f1oeq123d |
|
203 |
32 202
|
mpbid |
|