Metamath Proof Explorer


Theorem reprss

Description: Representations with terms in a subset. (Contributed by Thierry Arnoux, 11-Dec-2021)

Ref Expression
Hypotheses reprval.a φ A
reprval.m φ M
reprval.s φ S 0
reprss.1 φ B A
Assertion reprss φ B repr S M A repr S M

Proof

Step Hyp Ref Expression
1 reprval.a φ A
2 reprval.m φ M
3 reprval.s φ S 0
4 reprss.1 φ B A
5 nnex V
6 5 a1i φ V
7 6 1 ssexd φ A V
8 mapss A V B A B 0 ..^ S A 0 ..^ S
9 7 4 8 syl2anc φ B 0 ..^ S A 0 ..^ S
10 9 sselda φ c B 0 ..^ S c A 0 ..^ S
11 10 adantrr φ c B 0 ..^ S a 0 ..^ S c a = M c A 0 ..^ S
12 11 rabss3d φ c B 0 ..^ S | a 0 ..^ S c a = M c A 0 ..^ S | a 0 ..^ S c a = M
13 4 1 sstrd φ B
14 13 2 3 reprval φ B repr S M = c B 0 ..^ S | a 0 ..^ S c a = M
15 1 2 3 reprval φ A repr S M = c A 0 ..^ S | a 0 ..^ S c a = M
16 12 14 15 3sstr4d φ B repr S M A repr S M