Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Number Theory
Representations of a number as sums of integers
reprss
Next ⟩
reprinrn
Metamath Proof Explorer
Ascii
Unicode
Theorem
reprss
Description:
Representations with terms in a subset.
(Contributed by
Thierry Arnoux
, 11-Dec-2021)
Ref
Expression
Hypotheses
reprval.a
⊢
φ
→
A
⊆
ℕ
reprval.m
⊢
φ
→
M
∈
ℤ
reprval.s
⊢
φ
→
S
∈
ℕ
0
reprss.1
⊢
φ
→
B
⊆
A
Assertion
reprss
⊢
φ
→
B
repr
⁡
S
M
⊆
A
repr
⁡
S
M
Proof
Step
Hyp
Ref
Expression
1
reprval.a
⊢
φ
→
A
⊆
ℕ
2
reprval.m
⊢
φ
→
M
∈
ℤ
3
reprval.s
⊢
φ
→
S
∈
ℕ
0
4
reprss.1
⊢
φ
→
B
⊆
A
5
nnex
⊢
ℕ
∈
V
6
5
a1i
⊢
φ
→
ℕ
∈
V
7
6
1
ssexd
⊢
φ
→
A
∈
V
8
mapss
⊢
A
∈
V
∧
B
⊆
A
→
B
0
..^
S
⊆
A
0
..^
S
9
7
4
8
syl2anc
⊢
φ
→
B
0
..^
S
⊆
A
0
..^
S
10
9
sselda
⊢
φ
∧
c
∈
B
0
..^
S
→
c
∈
A
0
..^
S
11
10
adantrr
⊢
φ
∧
c
∈
B
0
..^
S
∧
∑
a
∈
0
..^
S
c
⁡
a
=
M
→
c
∈
A
0
..^
S
12
11
rabss3d
⊢
φ
→
c
∈
B
0
..^
S
|
∑
a
∈
0
..^
S
c
⁡
a
=
M
⊆
c
∈
A
0
..^
S
|
∑
a
∈
0
..^
S
c
⁡
a
=
M
13
4
1
sstrd
⊢
φ
→
B
⊆
ℕ
14
13
2
3
reprval
⊢
φ
→
B
repr
⁡
S
M
=
c
∈
B
0
..^
S
|
∑
a
∈
0
..^
S
c
⁡
a
=
M
15
1
2
3
reprval
⊢
φ
→
A
repr
⁡
S
M
=
c
∈
A
0
..^
S
|
∑
a
∈
0
..^
S
c
⁡
a
=
M
16
12
14
15
3sstr4d
⊢
φ
→
B
repr
⁡
S
M
⊆
A
repr
⁡
S
M