Step |
Hyp |
Ref |
Expression |
1 |
|
reprval.a |
|
2 |
|
reprval.m |
|
3 |
|
reprval.s |
|
4 |
|
reprsuc.f |
|
5 |
|
1nn0 |
|
6 |
5
|
a1i |
|
7 |
3 6
|
nn0addcld |
|
8 |
1 2 7
|
reprval |
|
9 |
|
simplr |
|
10 |
|
elmapi |
|
11 |
9 10
|
syl |
|
12 |
3
|
ad2antrr |
|
13 |
|
fzonn0p1 |
|
14 |
12 13
|
syl |
|
15 |
11 14
|
ffvelrnd |
|
16 |
|
simpr |
|
17 |
16
|
oveq2d |
|
18 |
17
|
oveq2d |
|
19 |
|
opeq2 |
|
20 |
19
|
sneqd |
|
21 |
20
|
uneq2d |
|
22 |
21
|
eqeq2d |
|
23 |
22
|
adantl |
|
24 |
18 23
|
rexeqbidv |
|
25 |
10
|
adantl |
|
26 |
3
|
adantr |
|
27 |
|
fzossfzop1 |
|
28 |
26 27
|
syl |
|
29 |
25 28
|
fssresd |
|
30 |
29
|
adantr |
|
31 |
|
nnex |
|
32 |
31
|
a1i |
|
33 |
32 1
|
ssexd |
|
34 |
|
fzofi |
|
35 |
34
|
elexi |
|
36 |
|
elmapg |
|
37 |
33 35 36
|
sylancl |
|
38 |
37
|
ad2antrr |
|
39 |
30 38
|
mpbird |
|
40 |
34
|
a1i |
|
41 |
|
nnsscn |
|
42 |
41
|
a1i |
|
43 |
1 42
|
sstrd |
|
44 |
43
|
ad2antrr |
|
45 |
29
|
ffvelrnda |
|
46 |
44 45
|
sseldd |
|
47 |
40 46
|
fsumcl |
|
48 |
47
|
adantr |
|
49 |
43
|
adantr |
|
50 |
26 13
|
syl |
|
51 |
25 50
|
ffvelrnd |
|
52 |
49 51
|
sseldd |
|
53 |
52
|
adantr |
|
54 |
48 53
|
pncand |
|
55 |
|
nfv |
|
56 |
|
nfcv |
|
57 |
|
fzonel |
|
58 |
57
|
a1i |
|
59 |
25
|
adantr |
|
60 |
28
|
sselda |
|
61 |
59 60
|
ffvelrnd |
|
62 |
44 61
|
sseldd |
|
63 |
|
fveq2 |
|
64 |
55 56 40 26 58 62 63 52
|
fsumsplitsn |
|
65 |
|
fzosplitsn |
|
66 |
|
nn0uz |
|
67 |
65 66
|
eleq2s |
|
68 |
26 67
|
syl |
|
69 |
68
|
sumeq1d |
|
70 |
|
simpr |
|
71 |
70
|
fvresd |
|
72 |
71
|
sumeq2dv |
|
73 |
72
|
oveq1d |
|
74 |
64 69 73
|
3eqtr4d |
|
75 |
74
|
adantr |
|
76 |
|
simpr |
|
77 |
75 76
|
eqtr3d |
|
78 |
77
|
oveq1d |
|
79 |
54 78
|
eqtr3d |
|
80 |
39 79
|
jca |
|
81 |
|
fveq1 |
|
82 |
81
|
sumeq2sdv |
|
83 |
82
|
eqeq1d |
|
84 |
83
|
elrab |
|
85 |
80 84
|
sylibr |
|
86 |
1
|
ad2antrr |
|
87 |
2
|
ad2antrr |
|
88 |
|
nnssz |
|
89 |
1 88
|
sstrdi |
|
90 |
89
|
ad2antrr |
|
91 |
90 15
|
sseldd |
|
92 |
87 91
|
zsubcld |
|
93 |
86 92 12
|
reprval |
|
94 |
85 93
|
eleqtrrd |
|
95 |
|
simpr |
|
96 |
95
|
uneq1d |
|
97 |
96
|
eqeq2d |
|
98 |
11
|
ffnd |
|
99 |
|
fnsnsplit |
|
100 |
98 14 99
|
syl2anc |
|
101 |
12 66
|
eleqtrdi |
|
102 |
|
fzodif2 |
|
103 |
101 102
|
syl |
|
104 |
103
|
reseq2d |
|
105 |
104
|
uneq1d |
|
106 |
100 105
|
eqtrd |
|
107 |
94 97 106
|
rspcedvd |
|
108 |
15 24 107
|
rspcedvd |
|
109 |
108
|
anasss |
|
110 |
|
simpr |
|
111 |
1
|
adantr |
|
112 |
111
|
adantr |
|
113 |
2
|
adantr |
|
114 |
89
|
sselda |
|
115 |
113 114
|
zsubcld |
|
116 |
115
|
adantr |
|
117 |
3
|
adantr |
|
118 |
117
|
adantr |
|
119 |
|
simpr |
|
120 |
112 116 118 119
|
reprf |
|
121 |
|
simplr |
|
122 |
118 121
|
fsnd |
|
123 |
|
fzodisjsn |
|
124 |
123
|
a1i |
|
125 |
120 122 124
|
fun2d |
|
126 |
118 67
|
syl |
|
127 |
126
|
feq2d |
|
128 |
125 127
|
mpbird |
|
129 |
|
ovex |
|
130 |
|
elmapg |
|
131 |
33 129 130
|
sylancl |
|
132 |
131
|
ad2antrr |
|
133 |
128 132
|
mpbird |
|
134 |
133
|
adantr |
|
135 |
110 134
|
eqeltrd |
|
136 |
126
|
adantr |
|
137 |
136
|
sumeq1d |
|
138 |
|
nfv |
|
139 |
34
|
a1i |
|
140 |
118
|
adantr |
|
141 |
57
|
a1i |
|
142 |
43
|
ad4antr |
|
143 |
128
|
adantr |
|
144 |
110
|
feq1d |
|
145 |
143 144
|
mpbird |
|
146 |
145
|
adantr |
|
147 |
|
simpr |
|
148 |
|
elun1 |
|
149 |
147 148
|
syl |
|
150 |
126
|
ad2antrr |
|
151 |
149 150
|
eleqtrrd |
|
152 |
146 151
|
ffvelrnd |
|
153 |
142 152
|
sseldd |
|
154 |
43
|
ad3antrrr |
|
155 |
140 13
|
syl |
|
156 |
145 155
|
ffvelrnd |
|
157 |
154 156
|
sseldd |
|
158 |
138 56 139 140 141 153 63 157
|
fsumsplitsn |
|
159 |
|
simplr |
|
160 |
159
|
fveq1d |
|
161 |
120
|
ffnd |
|
162 |
161
|
ad2antrr |
|
163 |
122
|
ffnd |
|
164 |
163
|
ad2antrr |
|
165 |
123
|
a1i |
|
166 |
|
fvun1 |
|
167 |
162 164 165 147 166
|
syl112anc |
|
168 |
160 167
|
eqtrd |
|
169 |
168
|
ralrimiva |
|
170 |
169
|
sumeq2d |
|
171 |
112
|
adantr |
|
172 |
116
|
adantr |
|
173 |
119
|
adantr |
|
174 |
171 172 140 173
|
reprsum |
|
175 |
170 174
|
eqtrd |
|
176 |
110
|
fveq1d |
|
177 |
161
|
adantr |
|
178 |
163
|
adantr |
|
179 |
123
|
a1i |
|
180 |
|
snidg |
|
181 |
140 180
|
syl |
|
182 |
|
fvun2 |
|
183 |
177 178 179 181 182
|
syl112anc |
|
184 |
121
|
adantr |
|
185 |
|
fvsng |
|
186 |
140 184 185
|
syl2anc |
|
187 |
176 183 186
|
3eqtrd |
|
188 |
175 187
|
oveq12d |
|
189 |
|
zsscn |
|
190 |
113
|
ad2antrr |
|
191 |
189 190
|
sselid |
|
192 |
187 157
|
eqeltrrd |
|
193 |
191 192
|
npcand |
|
194 |
188 193
|
eqtrd |
|
195 |
137 158 194
|
3eqtrd |
|
196 |
135 195
|
jca |
|
197 |
196
|
r19.29ffa |
|
198 |
109 197
|
impbida |
|
199 |
|
vex |
|
200 |
|
snex |
|
201 |
199 200
|
unex |
|
202 |
4 201
|
elrnmpti |
|
203 |
202
|
rexbii |
|
204 |
198 203
|
bitr4di |
|
205 |
|
fveq1 |
|
206 |
205
|
sumeq2sdv |
|
207 |
206
|
eqeq1d |
|
208 |
207
|
cbvrabv |
|
209 |
208
|
rabeq2i |
|
210 |
|
eliun |
|
211 |
204 209 210
|
3bitr4g |
|
212 |
211
|
eqrdv |
|
213 |
8 212
|
eqtrd |
|