Metamath Proof Explorer


Theorem reprsum

Description: Sums of values of the members of the representation of M equal M . (Contributed by Thierry Arnoux, 5-Dec-2021)

Ref Expression
Hypotheses reprval.a φ A
reprval.m φ M
reprval.s φ S 0
reprf.c φ C A repr S M
Assertion reprsum φ a 0 ..^ S C a = M

Proof

Step Hyp Ref Expression
1 reprval.a φ A
2 reprval.m φ M
3 reprval.s φ S 0
4 reprf.c φ C A repr S M
5 1 2 3 reprval φ A repr S M = c A 0 ..^ S | a 0 ..^ S c a = M
6 4 5 eleqtrd φ C c A 0 ..^ S | a 0 ..^ S c a = M
7 fveq1 c = C c a = C a
8 7 sumeq2sdv c = C a 0 ..^ S c a = a 0 ..^ S C a
9 8 eqeq1d c = C a 0 ..^ S c a = M a 0 ..^ S C a = M
10 9 elrab C c A 0 ..^ S | a 0 ..^ S c a = M C A 0 ..^ S a 0 ..^ S C a = M
11 6 10 sylib φ C A 0 ..^ S a 0 ..^ S C a = M
12 11 simprd φ a 0 ..^ S C a = M