Metamath Proof Explorer


Theorem repsco

Description: Mapping of words commutes with the "repeated symbol" operation. (Contributed by AV, 11-Nov-2018)

Ref Expression
Assertion repsco S A N 0 F : A B F S repeatS N = F S repeatS N

Proof

Step Hyp Ref Expression
1 simpl1 S A N 0 F : A B x 0 ..^ N S A
2 simpl2 S A N 0 F : A B x 0 ..^ N N 0
3 simpr S A N 0 F : A B x 0 ..^ N x 0 ..^ N
4 repswsymb S A N 0 x 0 ..^ N S repeatS N x = S
5 1 2 3 4 syl3anc S A N 0 F : A B x 0 ..^ N S repeatS N x = S
6 5 fveq2d S A N 0 F : A B x 0 ..^ N F S repeatS N x = F S
7 6 mpteq2dva S A N 0 F : A B x 0 ..^ N F S repeatS N x = x 0 ..^ N F S
8 simp3 S A N 0 F : A B F : A B
9 repsf S A N 0 S repeatS N : 0 ..^ N A
10 9 3adant3 S A N 0 F : A B S repeatS N : 0 ..^ N A
11 fcompt F : A B S repeatS N : 0 ..^ N A F S repeatS N = x 0 ..^ N F S repeatS N x
12 8 10 11 syl2anc S A N 0 F : A B F S repeatS N = x 0 ..^ N F S repeatS N x
13 fvexd S A F S V
14 13 anim1i S A N 0 F S V N 0
15 14 3adant3 S A N 0 F : A B F S V N 0
16 reps F S V N 0 F S repeatS N = x 0 ..^ N F S
17 15 16 syl S A N 0 F : A B F S repeatS N = x 0 ..^ N F S
18 7 12 17 3eqtr4d S A N 0 F : A B F S repeatS N = F S repeatS N