Metamath Proof Explorer


Theorem repsdf2

Description: Alternative definition of a "repeated symbol word". (Contributed by AV, 7-Nov-2018)

Ref Expression
Assertion repsdf2 S V N 0 W = S repeatS N W Word V W = N i 0 ..^ N W i = S

Proof

Step Hyp Ref Expression
1 repsconst S V N 0 S repeatS N = 0 ..^ N × S
2 1 eqeq2d S V N 0 W = S repeatS N W = 0 ..^ N × S
3 fconst2g S V W : 0 ..^ N S W = 0 ..^ N × S
4 3 adantr S V N 0 W : 0 ..^ N S W = 0 ..^ N × S
5 fconstfv W : 0 ..^ N S W Fn 0 ..^ N i 0 ..^ N W i = S
6 snssi S V S V
7 6 adantr S V N 0 S V
8 7 anim1ci S V N 0 W : 0 ..^ N S W : 0 ..^ N S S V
9 fss W : 0 ..^ N S S V W : 0 ..^ N V
10 iswrdi W : 0 ..^ N V W Word V
11 8 9 10 3syl S V N 0 W : 0 ..^ N S W Word V
12 ffzo0hash N 0 W Fn 0 ..^ N W = N
13 12 expcom W Fn 0 ..^ N N 0 W = N
14 ffn W : 0 ..^ N S W Fn 0 ..^ N
15 13 14 syl11 N 0 W : 0 ..^ N S W = N
16 15 adantl S V N 0 W : 0 ..^ N S W = N
17 16 imp S V N 0 W : 0 ..^ N S W = N
18 11 17 jca S V N 0 W : 0 ..^ N S W Word V W = N
19 18 ex S V N 0 W : 0 ..^ N S W Word V W = N
20 5 19 syl5bir S V N 0 W Fn 0 ..^ N i 0 ..^ N W i = S W Word V W = N
21 20 expcomd S V N 0 i 0 ..^ N W i = S W Fn 0 ..^ N W Word V W = N
22 21 imp S V N 0 i 0 ..^ N W i = S W Fn 0 ..^ N W Word V W = N
23 wrdf W Word V W : 0 ..^ W V
24 ffn W : 0 ..^ W V W Fn 0 ..^ W
25 oveq2 W = N 0 ..^ W = 0 ..^ N
26 25 fneq2d W = N W Fn 0 ..^ W W Fn 0 ..^ N
27 26 biimpd W = N W Fn 0 ..^ W W Fn 0 ..^ N
28 27 a1d W = N S V N 0 W Fn 0 ..^ W W Fn 0 ..^ N
29 28 com13 W Fn 0 ..^ W S V N 0 W = N W Fn 0 ..^ N
30 23 24 29 3syl W Word V S V N 0 W = N W Fn 0 ..^ N
31 30 com12 S V N 0 W Word V W = N W Fn 0 ..^ N
32 31 impd S V N 0 W Word V W = N W Fn 0 ..^ N
33 32 adantr S V N 0 i 0 ..^ N W i = S W Word V W = N W Fn 0 ..^ N
34 22 33 impbid S V N 0 i 0 ..^ N W i = S W Fn 0 ..^ N W Word V W = N
35 34 ex S V N 0 i 0 ..^ N W i = S W Fn 0 ..^ N W Word V W = N
36 35 pm5.32rd S V N 0 W Fn 0 ..^ N i 0 ..^ N W i = S W Word V W = N i 0 ..^ N W i = S
37 df-3an W Word V W = N i 0 ..^ N W i = S W Word V W = N i 0 ..^ N W i = S
38 36 5 37 3bitr4g S V N 0 W : 0 ..^ N S W Word V W = N i 0 ..^ N W i = S
39 2 4 38 3bitr2d S V N 0 W = S repeatS N W Word V W = N i 0 ..^ N W i = S