Metamath Proof Explorer


Theorem repsf

Description: The constructed function mapping a half-open range of nonnegative integers to a constant is a function. (Contributed by AV, 4-Nov-2018)

Ref Expression
Assertion repsf S V N 0 S repeatS N : 0 ..^ N V

Proof

Step Hyp Ref Expression
1 simpl S V x 0 ..^ N S V
2 1 ralrimiva S V x 0 ..^ N S V
3 2 adantr S V N 0 x 0 ..^ N S V
4 eqid x 0 ..^ N S = x 0 ..^ N S
5 4 fmpt x 0 ..^ N S V x 0 ..^ N S : 0 ..^ N V
6 3 5 sylib S V N 0 x 0 ..^ N S : 0 ..^ N V
7 reps S V N 0 S repeatS N = x 0 ..^ N S
8 7 feq1d S V N 0 S repeatS N : 0 ..^ N V x 0 ..^ N S : 0 ..^ N V
9 6 8 mpbird S V N 0 S repeatS N : 0 ..^ N V