Database
REAL AND COMPLEX NUMBERS
Words over a set
Repeated symbol words
repsw1
Next ⟩
repswswrd
Metamath Proof Explorer
Ascii
Unicode
Theorem
repsw1
Description:
The "repeated symbol word" of length 1.
(Contributed by
AV
, 4-Nov-2018)
Ref
Expression
Assertion
repsw1
⊢
S
∈
V
→
S
repeatS
1
=
〈“
S
”〉
Proof
Step
Hyp
Ref
Expression
1
1nn0
⊢
1
∈
ℕ
0
2
repsconst
⊢
S
∈
V
∧
1
∈
ℕ
0
→
S
repeatS
1
=
0
..^
1
×
S
3
1
2
mpan2
⊢
S
∈
V
→
S
repeatS
1
=
0
..^
1
×
S
4
fzo01
⊢
0
..^
1
=
0
5
4
a1i
⊢
S
∈
V
→
0
..^
1
=
0
6
5
xpeq1d
⊢
S
∈
V
→
0
..^
1
×
S
=
0
×
S
7
c0ex
⊢
0
∈
V
8
xpsng
⊢
0
∈
V
∧
S
∈
V
→
0
×
S
=
0
S
9
7
8
mpan
⊢
S
∈
V
→
0
×
S
=
0
S
10
3
6
9
3eqtrd
⊢
S
∈
V
→
S
repeatS
1
=
0
S
11
s1val
⊢
S
∈
V
→
〈“
S
”〉
=
0
S
12
10
11
eqtr4d
⊢
S
∈
V
→
S
repeatS
1
=
〈“
S
”〉