Metamath Proof Explorer


Theorem repsw1

Description: The "repeated symbol word" of length 1. (Contributed by AV, 4-Nov-2018)

Ref Expression
Assertion repsw1 S V S repeatS 1 = ⟨“ S ”⟩

Proof

Step Hyp Ref Expression
1 1nn0 1 0
2 repsconst S V 1 0 S repeatS 1 = 0 ..^ 1 × S
3 1 2 mpan2 S V S repeatS 1 = 0 ..^ 1 × S
4 fzo01 0 ..^ 1 = 0
5 4 a1i S V 0 ..^ 1 = 0
6 5 xpeq1d S V 0 ..^ 1 × S = 0 × S
7 c0ex 0 V
8 xpsng 0 V S V 0 × S = 0 S
9 7 8 mpan S V 0 × S = 0 S
10 3 6 9 3eqtrd S V S repeatS 1 = 0 S
11 s1val S V ⟨“ S ”⟩ = 0 S
12 10 11 eqtr4d S V S repeatS 1 = ⟨“ S ”⟩