Database
REAL AND COMPLEX NUMBERS
Words over a set
Longer string literals
repsw2
Next ⟩
repsw3
Metamath Proof Explorer
Ascii
Unicode
Theorem
repsw2
Description:
The "repeated symbol word" of length two.
(Contributed by
AV
, 6-Nov-2018)
Ref
Expression
Assertion
repsw2
⊢
S
∈
V
→
S
repeatS
2
=
〈“
S
S
”〉
Proof
Step
Hyp
Ref
Expression
1
df-s2
⊢
〈“
S
S
”〉
=
〈“
S
”〉
++
〈“
S
”〉
2
1nn0
⊢
1
∈
ℕ
0
3
repswccat
⊢
S
∈
V
∧
1
∈
ℕ
0
∧
1
∈
ℕ
0
→
S
repeatS
1
++
S
repeatS
1
=
S
repeatS
1
+
1
4
2
2
3
mp3an23
⊢
S
∈
V
→
S
repeatS
1
++
S
repeatS
1
=
S
repeatS
1
+
1
5
repsw1
⊢
S
∈
V
→
S
repeatS
1
=
〈“
S
”〉
6
5
5
oveq12d
⊢
S
∈
V
→
S
repeatS
1
++
S
repeatS
1
=
〈“
S
”〉
++
〈“
S
”〉
7
1p1e2
⊢
1
+
1
=
2
8
7
a1i
⊢
S
∈
V
→
1
+
1
=
2
9
8
oveq2d
⊢
S
∈
V
→
S
repeatS
1
+
1
=
S
repeatS
2
10
4
6
9
3eqtr3d
⊢
S
∈
V
→
〈“
S
”〉
++
〈“
S
”〉
=
S
repeatS
2
11
1
10
eqtr2id
⊢
S
∈
V
→
S
repeatS
2
=
〈“
S
S
”〉