Metamath Proof Explorer


Theorem repsw2

Description: The "repeated symbol word" of length two. (Contributed by AV, 6-Nov-2018)

Ref Expression
Assertion repsw2 S V S repeatS 2 = ⟨“ SS ”⟩

Proof

Step Hyp Ref Expression
1 df-s2 ⟨“ SS ”⟩ = ⟨“ S ”⟩ ++ ⟨“ S ”⟩
2 1nn0 1 0
3 repswccat S V 1 0 1 0 S repeatS 1 ++ S repeatS 1 = S repeatS 1 + 1
4 2 2 3 mp3an23 S V S repeatS 1 ++ S repeatS 1 = S repeatS 1 + 1
5 repsw1 S V S repeatS 1 = ⟨“ S ”⟩
6 5 5 oveq12d S V S repeatS 1 ++ S repeatS 1 = ⟨“ S ”⟩ ++ ⟨“ S ”⟩
7 1p1e2 1 + 1 = 2
8 7 a1i S V 1 + 1 = 2
9 8 oveq2d S V S repeatS 1 + 1 = S repeatS 2
10 4 6 9 3eqtr3d S V ⟨“ S ”⟩ ++ ⟨“ S ”⟩ = S repeatS 2
11 1 10 eqtr2id S V S repeatS 2 = ⟨“ SS ”⟩