Database
REAL AND COMPLEX NUMBERS
Words over a set
Longer string literals
repsw3
Next ⟩
swrd2lsw
Metamath Proof Explorer
Ascii
Unicode
Theorem
repsw3
Description:
The "repeated symbol word" of length three.
(Contributed by
AV
, 6-Nov-2018)
Ref
Expression
Assertion
repsw3
⊢
S
∈
V
→
S
repeatS
3
=
〈“
S
S
S
”〉
Proof
Step
Hyp
Ref
Expression
1
df-s3
⊢
〈“
S
S
S
”〉
=
〈“
S
S
”〉
++
〈“
S
”〉
2
2nn0
⊢
2
∈
ℕ
0
3
1nn0
⊢
1
∈
ℕ
0
4
repswccat
⊢
S
∈
V
∧
2
∈
ℕ
0
∧
1
∈
ℕ
0
→
S
repeatS
2
++
S
repeatS
1
=
S
repeatS
2
+
1
5
2
3
4
mp3an23
⊢
S
∈
V
→
S
repeatS
2
++
S
repeatS
1
=
S
repeatS
2
+
1
6
repsw2
⊢
S
∈
V
→
S
repeatS
2
=
〈“
S
S
”〉
7
repsw1
⊢
S
∈
V
→
S
repeatS
1
=
〈“
S
”〉
8
6
7
oveq12d
⊢
S
∈
V
→
S
repeatS
2
++
S
repeatS
1
=
〈“
S
S
”〉
++
〈“
S
”〉
9
2p1e3
⊢
2
+
1
=
3
10
9
a1i
⊢
S
∈
V
→
2
+
1
=
3
11
10
oveq2d
⊢
S
∈
V
→
S
repeatS
2
+
1
=
S
repeatS
3
12
5
8
11
3eqtr3d
⊢
S
∈
V
→
〈“
S
S
”〉
++
〈“
S
”〉
=
S
repeatS
3
13
1
12
eqtr2id
⊢
S
∈
V
→
S
repeatS
3
=
〈“
S
S
S
”〉