Step |
Hyp |
Ref |
Expression |
1 |
|
repswlen |
|
2 |
1
|
3adant3 |
|
3 |
|
repswlen |
|
4 |
3
|
3adant2 |
|
5 |
2 4
|
oveq12d |
|
6 |
5
|
oveq2d |
|
7 |
|
simp1 |
|
8 |
7
|
adantr |
|
9 |
|
simpl2 |
|
10 |
2
|
oveq2d |
|
11 |
10
|
eleq2d |
|
12 |
11
|
biimpa |
|
13 |
8 9 12
|
3jca |
|
14 |
13
|
adantlr |
|
15 |
|
repswsymb |
|
16 |
14 15
|
syl |
|
17 |
7
|
ad2antrr |
|
18 |
|
simpll3 |
|
19 |
2 4
|
jca |
|
20 |
|
simpr |
|
21 |
20
|
anim1i |
|
22 |
|
nn0z |
|
23 |
|
nn0z |
|
24 |
22 23
|
anim12i |
|
25 |
24
|
ad2antrr |
|
26 |
|
fzocatel |
|
27 |
21 25 26
|
syl2anc |
|
28 |
27
|
exp31 |
|
29 |
28
|
3adant1 |
|
30 |
|
oveq12 |
|
31 |
30
|
oveq2d |
|
32 |
31
|
eleq2d |
|
33 |
|
oveq2 |
|
34 |
33
|
eleq2d |
|
35 |
34
|
notbid |
|
36 |
35
|
adantr |
|
37 |
|
oveq2 |
|
38 |
37
|
eleq1d |
|
39 |
38
|
adantr |
|
40 |
36 39
|
imbi12d |
|
41 |
32 40
|
imbi12d |
|
42 |
29 41
|
syl5ibr |
|
43 |
19 42
|
mpcom |
|
44 |
43
|
imp31 |
|
45 |
|
repswsymb |
|
46 |
17 18 44 45
|
syl3anc |
|
47 |
16 46
|
ifeqda |
|
48 |
6 47
|
mpteq12dva |
|
49 |
|
ovex |
|
50 |
|
ovex |
|
51 |
49 50
|
pm3.2i |
|
52 |
|
ccatfval |
|
53 |
51 52
|
mp1i |
|
54 |
|
nn0addcl |
|
55 |
54
|
3adant1 |
|
56 |
|
reps |
|
57 |
7 55 56
|
syl2anc |
|
58 |
48 53 57
|
3eqtr4d |
|