Metamath Proof Explorer


Theorem repswfsts

Description: The first symbol of a nonempty "repeated symbol word". (Contributed by AV, 4-Nov-2018)

Ref Expression
Assertion repswfsts S V N S repeatS N 0 = S

Proof

Step Hyp Ref Expression
1 simpl S V N S V
2 nnnn0 N N 0
3 2 adantl S V N N 0
4 lbfzo0 0 0 ..^ N N
5 4 biimpri N 0 0 ..^ N
6 5 adantl S V N 0 0 ..^ N
7 repswsymb S V N 0 0 0 ..^ N S repeatS N 0 = S
8 1 3 6 7 syl3anc S V N S repeatS N 0 = S