Database
REAL AND COMPLEX NUMBERS
Words over a set
Repeated symbol words
repswlen
Next ⟩
repsw0
Metamath Proof Explorer
Ascii
Unicode
Theorem
repswlen
Description:
The length of a "repeated symbol word".
(Contributed by
AV
, 4-Nov-2018)
Ref
Expression
Assertion
repswlen
⊢
S
∈
V
∧
N
∈
ℕ
0
→
S
repeatS
N
=
N
Proof
Step
Hyp
Ref
Expression
1
repsf
⊢
S
∈
V
∧
N
∈
ℕ
0
→
S
repeatS
N
:
0
..^
N
⟶
V
2
ffn
⊢
S
repeatS
N
:
0
..^
N
⟶
V
→
S
repeatS
N
Fn
0
..^
N
3
hashfn
⊢
S
repeatS
N
Fn
0
..^
N
→
S
repeatS
N
=
0
..^
N
4
1
2
3
3syl
⊢
S
∈
V
∧
N
∈
ℕ
0
→
S
repeatS
N
=
0
..^
N
5
hashfzo0
⊢
N
∈
ℕ
0
→
0
..^
N
=
N
6
5
adantl
⊢
S
∈
V
∧
N
∈
ℕ
0
→
0
..^
N
=
N
7
4
6
eqtrd
⊢
S
∈
V
∧
N
∈
ℕ
0
→
S
repeatS
N
=
N