Metamath Proof Explorer


Theorem repswlsw

Description: The last symbol of a nonempty "repeated symbol word". (Contributed by AV, 4-Nov-2018)

Ref Expression
Assertion repswlsw S V N lastS S repeatS N = S

Proof

Step Hyp Ref Expression
1 nnnn0 N N 0
2 repsw S V N 0 S repeatS N Word V
3 1 2 sylan2 S V N S repeatS N Word V
4 lsw S repeatS N Word V lastS S repeatS N = S repeatS N S repeatS N 1
5 3 4 syl S V N lastS S repeatS N = S repeatS N S repeatS N 1
6 simpl S V N S V
7 1 adantl S V N N 0
8 repswlen S V N 0 S repeatS N = N
9 1 8 sylan2 S V N S repeatS N = N
10 9 oveq1d S V N S repeatS N 1 = N 1
11 fzo0end N N 1 0 ..^ N
12 11 adantl S V N N 1 0 ..^ N
13 10 12 eqeltrd S V N S repeatS N 1 0 ..^ N
14 repswsymb S V N 0 S repeatS N 1 0 ..^ N S repeatS N S repeatS N 1 = S
15 6 7 13 14 syl3anc S V N S repeatS N S repeatS N 1 = S
16 5 15 eqtrd S V N lastS S repeatS N = S