Database
REAL AND COMPLEX NUMBERS
Words over a set
Repeated symbol words
repswlsw
Next ⟩
repsw1
Metamath Proof Explorer
Ascii
Unicode
Theorem
repswlsw
Description:
The last symbol of a nonempty "repeated symbol word".
(Contributed by
AV
, 4-Nov-2018)
Ref
Expression
Assertion
repswlsw
⊢
S
∈
V
∧
N
∈
ℕ
→
lastS
⁡
S
repeatS
N
=
S
Proof
Step
Hyp
Ref
Expression
1
nnnn0
⊢
N
∈
ℕ
→
N
∈
ℕ
0
2
repsw
⊢
S
∈
V
∧
N
∈
ℕ
0
→
S
repeatS
N
∈
Word
V
3
1
2
sylan2
⊢
S
∈
V
∧
N
∈
ℕ
→
S
repeatS
N
∈
Word
V
4
lsw
⊢
S
repeatS
N
∈
Word
V
→
lastS
⁡
S
repeatS
N
=
S
repeatS
N
⁡
S
repeatS
N
−
1
5
3
4
syl
⊢
S
∈
V
∧
N
∈
ℕ
→
lastS
⁡
S
repeatS
N
=
S
repeatS
N
⁡
S
repeatS
N
−
1
6
simpl
⊢
S
∈
V
∧
N
∈
ℕ
→
S
∈
V
7
1
adantl
⊢
S
∈
V
∧
N
∈
ℕ
→
N
∈
ℕ
0
8
repswlen
⊢
S
∈
V
∧
N
∈
ℕ
0
→
S
repeatS
N
=
N
9
1
8
sylan2
⊢
S
∈
V
∧
N
∈
ℕ
→
S
repeatS
N
=
N
10
9
oveq1d
⊢
S
∈
V
∧
N
∈
ℕ
→
S
repeatS
N
−
1
=
N
−
1
11
fzo0end
⊢
N
∈
ℕ
→
N
−
1
∈
0
..^
N
12
11
adantl
⊢
S
∈
V
∧
N
∈
ℕ
→
N
−
1
∈
0
..^
N
13
10
12
eqeltrd
⊢
S
∈
V
∧
N
∈
ℕ
→
S
repeatS
N
−
1
∈
0
..^
N
14
repswsymb
⊢
S
∈
V
∧
N
∈
ℕ
0
∧
S
repeatS
N
−
1
∈
0
..^
N
→
S
repeatS
N
⁡
S
repeatS
N
−
1
=
S
15
6
7
13
14
syl3anc
⊢
S
∈
V
∧
N
∈
ℕ
→
S
repeatS
N
⁡
S
repeatS
N
−
1
=
S
16
5
15
eqtrd
⊢
S
∈
V
∧
N
∈
ℕ
→
lastS
⁡
S
repeatS
N
=
S