Metamath Proof Explorer


Theorem repswrevw

Description: The reverse of a "repeated symbol word". (Contributed by AV, 6-Nov-2018)

Ref Expression
Assertion repswrevw S V N 0 reverse S repeatS N = S repeatS N

Proof

Step Hyp Ref Expression
1 repswlen S V N 0 S repeatS N = N
2 1 oveq2d S V N 0 0 ..^ S repeatS N = 0 ..^ N
3 2 mpteq1d S V N 0 x 0 ..^ S repeatS N S repeatS N S repeatS N - 1 - x = x 0 ..^ N S repeatS N S repeatS N - 1 - x
4 simpll S V N 0 x 0 ..^ N S V
5 simplr S V N 0 x 0 ..^ N N 0
6 1 adantr S V N 0 x 0 ..^ N S repeatS N = N
7 6 oveq1d S V N 0 x 0 ..^ N S repeatS N 1 = N 1
8 7 oveq1d S V N 0 x 0 ..^ N S repeatS N - 1 - x = N - 1 - x
9 ubmelm1fzo x 0 ..^ N N - x - 1 0 ..^ N
10 elfzoelz x 0 ..^ N x
11 nn0cn N 0 N
12 11 ad2antll x S V N 0 N
13 zcn x x
14 13 adantr x S V N 0 x
15 1cnd x S V N 0 1
16 12 14 15 sub32d x S V N 0 N - x - 1 = N - 1 - x
17 16 eleq1d x S V N 0 N - x - 1 0 ..^ N N - 1 - x 0 ..^ N
18 17 biimpd x S V N 0 N - x - 1 0 ..^ N N - 1 - x 0 ..^ N
19 18 ex x S V N 0 N - x - 1 0 ..^ N N - 1 - x 0 ..^ N
20 10 19 syl x 0 ..^ N S V N 0 N - x - 1 0 ..^ N N - 1 - x 0 ..^ N
21 9 20 mpid x 0 ..^ N S V N 0 N - 1 - x 0 ..^ N
22 21 impcom S V N 0 x 0 ..^ N N - 1 - x 0 ..^ N
23 8 22 eqeltrd S V N 0 x 0 ..^ N S repeatS N - 1 - x 0 ..^ N
24 repswsymb S V N 0 S repeatS N - 1 - x 0 ..^ N S repeatS N S repeatS N - 1 - x = S
25 4 5 23 24 syl3anc S V N 0 x 0 ..^ N S repeatS N S repeatS N - 1 - x = S
26 25 mpteq2dva S V N 0 x 0 ..^ N S repeatS N S repeatS N - 1 - x = x 0 ..^ N S
27 3 26 eqtrd S V N 0 x 0 ..^ S repeatS N S repeatS N S repeatS N - 1 - x = x 0 ..^ N S
28 ovex S repeatS N V
29 revval S repeatS N V reverse S repeatS N = x 0 ..^ S repeatS N S repeatS N S repeatS N - 1 - x
30 28 29 mp1i S V N 0 reverse S repeatS N = x 0 ..^ S repeatS N S repeatS N S repeatS N - 1 - x
31 reps S V N 0 S repeatS N = x 0 ..^ N S
32 27 30 31 3eqtr4d S V N 0 reverse S repeatS N = S repeatS N