Metamath Proof Explorer


Theorem repswsymball

Description: All the symbols of a "repeated symbol word" are the same. (Contributed by AV, 10-Nov-2018)

Ref Expression
Assertion repswsymball W Word V S V W = S repeatS W i 0 ..^ W W i = S

Proof

Step Hyp Ref Expression
1 df-3an W Word V W = W i 0 ..^ W W i = S W Word V W = W i 0 ..^ W W i = S
2 1 a1i W Word V S V W Word V W = W i 0 ..^ W W i = S W Word V W = W i 0 ..^ W W i = S
3 lencl W Word V W 0
4 3 anim1ci W Word V S V S V W 0
5 repsdf2 S V W 0 W = S repeatS W W Word V W = W i 0 ..^ W W i = S
6 4 5 syl W Word V S V W = S repeatS W W Word V W = W i 0 ..^ W W i = S
7 simpl W Word V S V W Word V
8 eqidd W Word V S V W = W
9 7 8 jca W Word V S V W Word V W = W
10 9 biantrurd W Word V S V i 0 ..^ W W i = S W Word V W = W i 0 ..^ W W i = S
11 2 6 10 3bitr4d W Word V S V W = S repeatS W i 0 ..^ W W i = S
12 11 biimpd W Word V S V W = S repeatS W i 0 ..^ W W i = S