Metamath Proof Explorer


Theorem repwsmet

Description: The supremum metric on RR ^ I is a metric. (Contributed by Jeff Madsen, 15-Sep-2015)

Ref Expression
Hypotheses rrnequiv.y Y = fld 𝑠 𝑠 I
rrnequiv.d D = dist Y
rrnequiv.1 X = I
Assertion repwsmet I Fin D Met X

Proof

Step Hyp Ref Expression
1 rrnequiv.y Y = fld 𝑠 𝑠 I
2 rrnequiv.d D = dist Y
3 rrnequiv.1 X = I
4 fconstmpt I × fld 𝑠 = k I fld 𝑠
5 4 oveq2i Scalar fld 𝑠 I × fld 𝑠 = Scalar fld 𝑠 k I fld 𝑠
6 eqid Base Scalar fld 𝑠 I × fld 𝑠 = Base Scalar fld 𝑠 I × fld 𝑠
7 ax-resscn
8 eqid fld 𝑠 = fld 𝑠
9 cnfldbas = Base fld
10 8 9 ressbas2 = Base fld 𝑠
11 7 10 ax-mp = Base fld 𝑠
12 reex V
13 cnfldds abs = dist fld
14 8 13 ressds V abs = dist fld 𝑠
15 12 14 ax-mp abs = dist fld 𝑠
16 15 reseq1i abs 2 = dist fld 𝑠 2
17 eqid dist Scalar fld 𝑠 I × fld 𝑠 = dist Scalar fld 𝑠 I × fld 𝑠
18 fvexd I Fin Scalar fld V
19 id I Fin I Fin
20 ovex fld 𝑠 V
21 20 a1i I Fin k I fld 𝑠 V
22 eqid abs 2 = abs 2
23 22 remet abs 2 Met
24 23 a1i I Fin k I abs 2 Met
25 5 6 11 16 17 18 19 21 24 prdsmet I Fin dist Scalar fld 𝑠 I × fld 𝑠 Met Base Scalar fld 𝑠 I × fld 𝑠
26 eqid Scalar fld = Scalar fld
27 8 26 resssca V Scalar fld = Scalar fld 𝑠
28 12 27 ax-mp Scalar fld = Scalar fld 𝑠
29 1 28 pwsval fld 𝑠 V I Fin Y = Scalar fld 𝑠 I × fld 𝑠
30 20 29 mpan I Fin Y = Scalar fld 𝑠 I × fld 𝑠
31 30 fveq2d I Fin dist Y = dist Scalar fld 𝑠 I × fld 𝑠
32 2 31 syl5eq I Fin D = dist Scalar fld 𝑠 I × fld 𝑠
33 1 11 pwsbas fld 𝑠 V I Fin I = Base Y
34 20 33 mpan I Fin I = Base Y
35 30 fveq2d I Fin Base Y = Base Scalar fld 𝑠 I × fld 𝑠
36 34 35 eqtrd I Fin I = Base Scalar fld 𝑠 I × fld 𝑠
37 3 36 syl5eq I Fin X = Base Scalar fld 𝑠 I × fld 𝑠
38 37 fveq2d I Fin Met X = Met Base Scalar fld 𝑠 I × fld 𝑠
39 25 32 38 3eltr4d I Fin D Met X