Metamath Proof Explorer


Theorem rereb

Description: A number is real iff it equals its real part. Proposition 10-3.4(f) of Gleason p. 133. (Contributed by NM, 20-Aug-2008)

Ref Expression
Assertion rereb A A A = A

Proof

Step Hyp Ref Expression
1 replim A A = A + i A
2 1 adantr A A A = A + i A
3 reim0 A A = 0
4 3 oveq2d A i A = i 0
5 it0e0 i 0 = 0
6 4 5 eqtrdi A i A = 0
7 6 adantl A A i A = 0
8 7 oveq2d A A A + i A = A + 0
9 recl A A
10 9 recnd A A
11 10 addid1d A A + 0 = A
12 11 adantr A A A + 0 = A
13 2 8 12 3eqtrrd A A A = A
14 simpr A A = A A = A
15 9 adantr A A = A A
16 14 15 eqeltrrd A A = A A
17 13 16 impbida A A A = A