Metamath Proof Explorer


Theorem rerebd

Description: A real number equals its real part. Proposition 10-3.4(f) of Gleason p. 133. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses recld.1 φ A
rerebd.2 φ A = A
Assertion rerebd φ A

Proof

Step Hyp Ref Expression
1 recld.1 φ A
2 rerebd.2 φ A = A
3 rereb A A A = A
4 1 3 syl φ A A = A
5 2 4 mpbird φ A