Metamath Proof Explorer


Theorem rereccl

Description: Closure law for reciprocal. (Contributed by NM, 30-Apr-2005) (Revised by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion rereccl A A 0 1 A

Proof

Step Hyp Ref Expression
1 ax-rrecex A A 0 x A x = 1
2 eqcom x = 1 A 1 A = x
3 1cnd A A 0 x 1
4 simpr A A 0 x x
5 4 recnd A A 0 x x
6 simpll A A 0 x A
7 6 recnd A A 0 x A
8 simplr A A 0 x A 0
9 divmul 1 x A A 0 1 A = x A x = 1
10 3 5 7 8 9 syl112anc A A 0 x 1 A = x A x = 1
11 2 10 syl5bb A A 0 x x = 1 A A x = 1
12 11 rexbidva A A 0 x x = 1 A x A x = 1
13 1 12 mpbird A A 0 x x = 1 A
14 risset 1 A x x = 1 A
15 13 14 sylibr A A 0 1 A