Metamath Proof Explorer


Theorem rereccld

Description: Closure law for reciprocal. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses redivcld.1 φ A
rereccld.2 φ A 0
Assertion rereccld φ 1 A

Proof

Step Hyp Ref Expression
1 redivcld.1 φ A
2 rereccld.2 φ A 0
3 rereccl A A 0 1 A
4 1 2 3 syl2anc φ 1 A