Metamath Proof Explorer
Description: Closure law for reciprocal. (Contributed by Mario Carneiro, 27-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
redivcld.1 |
|
|
|
rereccld.2 |
|
|
Assertion |
rereccld |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
redivcld.1 |
|
2 |
|
rereccld.2 |
|
3 |
|
rereccl |
|
4 |
1 2 3
|
syl2anc |
|