Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Division
rereccli
Next ⟩
redivclzi
Metamath Proof Explorer
Ascii
Unicode
Theorem
rereccli
Description:
Closure law for reciprocal.
(Contributed by
NM
, 30-Apr-2005)
Ref
Expression
Hypotheses
redivcl.1
⊢
A
∈
ℝ
rereccl.2
⊢
A
≠
0
Assertion
rereccli
⊢
1
A
∈
ℝ
Proof
Step
Hyp
Ref
Expression
1
redivcl.1
⊢
A
∈
ℝ
2
rereccl.2
⊢
A
≠
0
3
1
rerecclzi
⊢
A
≠
0
→
1
A
∈
ℝ
4
2
3
ax-mp
⊢
1
A
∈
ℝ