Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Division
rerecclzi
Next ⟩
rereccli
Metamath Proof Explorer
Ascii
Unicode
Theorem
rerecclzi
Description:
Closure law for reciprocal.
(Contributed by
NM
, 30-Apr-2005)
Ref
Expression
Hypothesis
redivcl.1
⊢
A
∈
ℝ
Assertion
rerecclzi
⊢
A
≠
0
→
1
A
∈
ℝ
Proof
Step
Hyp
Ref
Expression
1
redivcl.1
⊢
A
∈
ℝ
2
rereccl
⊢
A
∈
ℝ
∧
A
≠
0
→
1
A
∈
ℝ
3
1
2
mpan
⊢
A
≠
0
→
1
A
∈
ℝ