Metamath Proof Explorer


Theorem rerpdivcl

Description: Closure law for division of a real by a positive real. (Contributed by NM, 10-Nov-2008)

Ref Expression
Assertion rerpdivcl A B + A B

Proof

Step Hyp Ref Expression
1 rprene0 B + B B 0
2 redivcl A B B 0 A B
3 2 3expb A B B 0 A B
4 1 3 sylan2 A B + A B