Database
REAL AND COMPLEX NUMBERS
Order sets
Positive reals (as a subset of complex numbers)
rerpdivcl
Next ⟩
ge0p1rp
Metamath Proof Explorer
Ascii
Unicode
Theorem
rerpdivcl
Description:
Closure law for division of a real by a positive real.
(Contributed by
NM
, 10-Nov-2008)
Ref
Expression
Assertion
rerpdivcl
⊢
A
∈
ℝ
∧
B
∈
ℝ
+
→
A
B
∈
ℝ
Proof
Step
Hyp
Ref
Expression
1
rprene0
⊢
B
∈
ℝ
+
→
B
∈
ℝ
∧
B
≠
0
2
redivcl
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
B
≠
0
→
A
B
∈
ℝ
3
2
3expb
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
B
≠
0
→
A
B
∈
ℝ
4
1
3
sylan2
⊢
A
∈
ℝ
∧
B
∈
ℝ
+
→
A
B
∈
ℝ