Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
res0
Next ⟩
dfres3
Metamath Proof Explorer
Ascii
Unicode
Theorem
res0
Description:
A restriction to the empty set is empty.
(Contributed by
NM
, 12-Nov-1994)
Ref
Expression
Assertion
res0
⊢
A
↾
∅
=
∅
Proof
Step
Hyp
Ref
Expression
1
df-res
⊢
A
↾
∅
=
A
∩
∅
×
V
2
0xp
⊢
∅
×
V
=
∅
3
2
ineq2i
⊢
A
∩
∅
×
V
=
A
∩
∅
4
in0
⊢
A
∩
∅
=
∅
5
1
3
4
3eqtri
⊢
A
↾
∅
=
∅