Database
BASIC CATEGORY THEORY
Categories
Subcategories
rescabs2
Next ⟩
issubc
Metamath Proof Explorer
Ascii
Unicode
Theorem
rescabs2
Description:
Restriction absorption law.
(Contributed by
Mario Carneiro
, 6-Jan-2017)
Ref
Expression
Hypotheses
rescabs2.c
⊢
φ
→
C
∈
V
rescabs2.j
⊢
φ
→
J
Fn
T
×
T
rescabs2.s
⊢
φ
→
S
∈
W
rescabs2.t
⊢
φ
→
T
⊆
S
Assertion
rescabs2
⊢
φ
→
C
↾
𝑠
S
↾
cat
J
=
C
↾
cat
J
Proof
Step
Hyp
Ref
Expression
1
rescabs2.c
⊢
φ
→
C
∈
V
2
rescabs2.j
⊢
φ
→
J
Fn
T
×
T
3
rescabs2.s
⊢
φ
→
S
∈
W
4
rescabs2.t
⊢
φ
→
T
⊆
S
5
ressabs
⊢
S
∈
W
∧
T
⊆
S
→
C
↾
𝑠
S
↾
𝑠
T
=
C
↾
𝑠
T
6
3
4
5
syl2anc
⊢
φ
→
C
↾
𝑠
S
↾
𝑠
T
=
C
↾
𝑠
T
7
6
oveq1d
⊢
φ
→
C
↾
𝑠
S
↾
𝑠
T
sSet
Hom
⁡
ndx
J
=
C
↾
𝑠
T
sSet
Hom
⁡
ndx
J
8
eqid
⊢
C
↾
𝑠
S
↾
cat
J
=
C
↾
𝑠
S
↾
cat
J
9
ovexd
⊢
φ
→
C
↾
𝑠
S
∈
V
10
3
4
ssexd
⊢
φ
→
T
∈
V
11
8
9
10
2
rescval2
⊢
φ
→
C
↾
𝑠
S
↾
cat
J
=
C
↾
𝑠
S
↾
𝑠
T
sSet
Hom
⁡
ndx
J
12
eqid
⊢
C
↾
cat
J
=
C
↾
cat
J
13
12
1
10
2
rescval2
⊢
φ
→
C
↾
cat
J
=
C
↾
𝑠
T
sSet
Hom
⁡
ndx
J
14
7
11
13
3eqtr4d
⊢
φ
→
C
↾
𝑠
S
↾
cat
J
=
C
↾
cat
J