Metamath Proof Explorer


Theorem rescabs2

Description: Restriction absorption law. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses rescabs2.c φ C V
rescabs2.j φ J Fn T × T
rescabs2.s φ S W
rescabs2.t φ T S
Assertion rescabs2 φ C 𝑠 S cat J = C cat J

Proof

Step Hyp Ref Expression
1 rescabs2.c φ C V
2 rescabs2.j φ J Fn T × T
3 rescabs2.s φ S W
4 rescabs2.t φ T S
5 ressabs S W T S C 𝑠 S 𝑠 T = C 𝑠 T
6 3 4 5 syl2anc φ C 𝑠 S 𝑠 T = C 𝑠 T
7 6 oveq1d φ C 𝑠 S 𝑠 T sSet Hom ndx J = C 𝑠 T sSet Hom ndx J
8 eqid C 𝑠 S cat J = C 𝑠 S cat J
9 ovexd φ C 𝑠 S V
10 3 4 ssexd φ T V
11 8 9 10 2 rescval2 φ C 𝑠 S cat J = C 𝑠 S 𝑠 T sSet Hom ndx J
12 eqid C cat J = C cat J
13 12 1 10 2 rescval2 φ C cat J = C 𝑠 T sSet Hom ndx J
14 7 11 13 3eqtr4d φ C 𝑠 S cat J = C cat J