Metamath Proof Explorer


Theorem rescbas

Description: Base set of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses rescbas.d D = C cat H
rescbas.b B = Base C
rescbas.c φ C V
rescbas.h φ H Fn S × S
rescbas.s φ S B
Assertion rescbas φ S = Base D

Proof

Step Hyp Ref Expression
1 rescbas.d D = C cat H
2 rescbas.b B = Base C
3 rescbas.c φ C V
4 rescbas.h φ H Fn S × S
5 rescbas.s φ S B
6 baseid Base = Slot Base ndx
7 1re 1
8 1nn 1
9 4nn0 4 0
10 1nn0 1 0
11 1lt10 1 < 10
12 8 9 10 11 declti 1 < 14
13 7 12 ltneii 1 14
14 basendx Base ndx = 1
15 homndx Hom ndx = 14
16 14 15 neeq12i Base ndx Hom ndx 1 14
17 13 16 mpbir Base ndx Hom ndx
18 6 17 setsnid Base C 𝑠 S = Base C 𝑠 S sSet Hom ndx H
19 eqid C 𝑠 S = C 𝑠 S
20 19 2 ressbas2 S B S = Base C 𝑠 S
21 5 20 syl φ S = Base C 𝑠 S
22 2 fvexi B V
23 22 ssex S B S V
24 5 23 syl φ S V
25 1 3 24 4 rescval2 φ D = C 𝑠 S sSet Hom ndx H
26 25 fveq2d φ Base D = Base C 𝑠 S sSet Hom ndx H
27 18 21 26 3eqtr4a φ S = Base D