Metamath Proof Explorer


Theorem rescco

Description: Composition in the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017) (Proof shortened by AV, 13-Oct-2024)

Ref Expression
Hypotheses rescbas.d D = C cat H
rescbas.b B = Base C
rescbas.c φ C V
rescbas.h φ H Fn S × S
rescbas.s φ S B
rescco.o · ˙ = comp C
Assertion rescco φ · ˙ = comp D

Proof

Step Hyp Ref Expression
1 rescbas.d D = C cat H
2 rescbas.b B = Base C
3 rescbas.c φ C V
4 rescbas.h φ H Fn S × S
5 rescbas.s φ S B
6 rescco.o · ˙ = comp C
7 ccoid comp = Slot comp ndx
8 slotsbhcdif Base ndx Hom ndx Base ndx comp ndx Hom ndx comp ndx
9 simp3 Base ndx Hom ndx Base ndx comp ndx Hom ndx comp ndx Hom ndx comp ndx
10 9 necomd Base ndx Hom ndx Base ndx comp ndx Hom ndx comp ndx comp ndx Hom ndx
11 8 10 ax-mp comp ndx Hom ndx
12 7 11 setsnid comp C 𝑠 S = comp C 𝑠 S sSet Hom ndx H
13 2 fvexi B V
14 13 ssex S B S V
15 5 14 syl φ S V
16 eqid C 𝑠 S = C 𝑠 S
17 16 6 ressco S V · ˙ = comp C 𝑠 S
18 15 17 syl φ · ˙ = comp C 𝑠 S
19 1 3 15 4 rescval2 φ D = C 𝑠 S sSet Hom ndx H
20 19 fveq2d φ comp D = comp C 𝑠 S sSet Hom ndx H
21 12 18 20 3eqtr4a φ · ˙ = comp D